ELSA ERAZOR™ III Pro ELSA ERAZOR™ III LT

© 1999 ELSA AG, Aachen (Germany)

Alle Angaben in dieser Dokumentation sind nach sorgfältiger Prüfung zusammengestellt worden, gelten jedoch nicht als Zusicherung von Produkteigenschaften. ELSA haftet ausschließlich in dem Umfang, der in den Verkaufs- und Lieferbedingungen festgelegt ist.

Weitergabe und Vervielfältigung der zu diesem Produkt gehörenden Dokumentation und Software und die Verwendung ihres Inhalts sind nur mit schriftlicher Erlaubnis von ELSA gestattet. Änderungen, die dem technischen Fortschritt dienen, bleiben vorbehalten.

ELSA ist DIN-EN-ISO-9001-zertifiziert. Mit der Urkunde vom 15.06.1998 bescheinigt die akkreditierte Zertifizierungsstelle TÜV CERT die Konformität mit der weltweit anerkannten Norm DIN EN ISO 9001. Die an ELSA vergebene Zertifikatsnummer lautet 09 100 5069.

Marken

Windows[®], Windows NT[®] und Microsoft[®] sind eingetragene Marken von Microsoft, Corp.

OpenGL® ist eine eingetragene Marke von Silicon Graphics, Inc.

Alle übrigen verwendeten Namen und Bezeichnungen können Marken oder eingetragene Marken ihrer jeweiligen Eigentümer sein. Das ELSA-Logo ist eine eingetragene Marke der ELSA AG.

ELSA behält sich vor, die genannten Daten ohne Ankündigung zu ändern, und übernimmt keine Gewähr für technische Ungenauigkeiten und/oder Auslassungen.

ELSA AG

Sonnenweg 11

D-52070 Aachen

www elsa de

Aachen, August 1999

Ein Wort vorab

Vielen Dank für Ihr Vertrauen!

Ob Sie sich nun für die *ELSA ERAZOR III Pro* oder die *ELSA ERAZOR III LT* entschieden haben, Sie haben eine Grafikkarte gewählt, die gleichermaßen für professionelle Anwender wie ambitionierte Spieler prädestiniert ist. Höchste Qualitätsanforderungen in der Fertigung und eine enggefaßte Qualitätskontrolle bilden die Basis für den hohen Produktstandard und sind Voraussetzung für gleichbleibende Produktqualität.

In diesem Handbuch finden Sie alles über Ihre ELSA-Grafikkarte. Welche Auflösung stelle ich für welchen Monitor ein, und wie kann ich meine Grafikkarte aufrüsten? Es werden die beiliegenden ELSA-Hilfsprogramme vorgestellt, und Sie erhalten Informationen zum Thema 3D-Beschleunigung.

ELSA-Produkte zeichnen sich u.a. durch stetige Weiterentwicklung aus. Es ist daher möglich, daß die gedruckte Dokumentation in diesem Handbuch nicht immer auf dem neuesten Stand ist

Den LIESMICH-Dateien auf der *ERAZOR III-*CD können Sie aktuelle Informationen über Änderungen entnehmen.

Sollten Sie zu den in diesem Handbuch besprochenen Themen noch Fragen haben oder zusätzliche Hilfe benötigen, stehen Ihnen unsere Online-Dienste rund um die Uhr zur Verfügung. Den gesamten Umfang der von ELSA bereitgestellten Unterstützung und Service-Leistungen können Sie den ELSA-Webseiten entnehmen.

In dringenden Fällen wenden Sie sich bitte an die ELSA-Support-Hotline: +49-(0)241-606-6131.

der Lektüre des Handbuchs beginnen.

Inhalt

Einleitung	1
Highlights der ELSA ERAZOR III	
Video-In	1
Video-Out	2
Alles im Karton?	2
Was brauche ich für Hardware?	2
CE-Konformität und FCC-Strahlungsnorm	3
Nach der Treiberinstallation	5
Software-Installation von der CD	5
Die richtige Einstellung	6
Was ist möglich?	6
Was ist sinnvoll?	7
Ändern der Auflösung	7
Windows 95 und Windows 98	8
Windows NT 4.0	
Video – Was ist Out, was ist In?	
Offen für fremde Signale — Ein Überblick	11
Video-In	12
Video-Out	12
Richtig verbunden?	12
Mit der Kabelpeitsche alles erschlagen	
Anschluß eines TV-Gerätes	
ELSA-Video-Einstellungen	
Video-In	15
Das Videobild auf dem Computermonitor	15
Wie kommt das Videobild auf den Computer-Monitor?	17
Keine Idee?	17
Was ist IN?	17
Was ist OUT?	
Das Monitorbild auf TV/Video	18
Nützliches und mehr	21
Der Multimedia Player	21
Videokontrolle de Luxe	22
Im Detail — die Bedienung	22
Auf Infosuche — Der Videotextdecoder	24
Nett, Meeting!	24
MainActor – Der Hauptdarsteller	25

lada	40
Glossar	45
Allgemeine Garantiebedingungen vom 01.06.1998	43
Konformitätserklärungen	
Anhang	
Die VGA-D-Shell-Buchse	. 40
Anschlüsse auf der Grafikkarte	
Die Adreßbelegung Ihrer ELSA-Grafikkarte	
Eigenschaften der Grafikkarten	. 39
Technische Daten	
ELSA komprimiert	
YVU9	
RGB16	
Kompressionsformate: Verdichter sind am Werk	
IEEE-1394	
S-VHS	
Composite-Video	
Videosignal-Formate	
DDC2AB	
DDC2B	
DirectColorVESA DDC (Display Data Channel)	
VGA	
Farbpaletten, TrueColor und Graustufen	
OpenGL	
Direct3D	
Welche APIs gibt es?	
3D-Schnittstellen	
Die 3D-Pipeline	
3D-Grafikdarstellung	
Grafik-Know-how	
Feintuning für Performance-Puristen	
Der Viewer	
Der Sequencer	
Der Seguencer	26

Einleitung

Sie besitzen entweder die *ELSA ERAZOR III Pro*, die es in zwei Varianten – mit und ohne Videofunktion – gibt, oder die *ELSA ERAZOR III LT*, zur Zeit – ohne Videofunktion. In diesem Handbuch sind beide Karten in ihren Varianten beschrieben. Aber Sie müssen nicht alles lesen: Die Passagen, die sich nur auf die Videofunktionen beziehen, sind entsprechend gekennzeichnet.

Highlights der ELSA ERAZOR III

- Das Prozessor-Kraftpaket TNT2 Pro von NVIDIA (ELSA ERAZOR III Pro) bzw. TNT2 M64 (ELSA ERAZOR III LT)
- Bis zu 32MB Videospeicher und maximal 128MB Texturspeicher über den AGP-Bus
- Taktfrequenz: bis zu 300 MHz Pixel-Clock
- ELSA-Treiber für Windows NT 4.0, Windows 98 und Windows 95
- Zwei unabhängig voneinander operierende 3D-Render-Pipelines
- Bei der *ELSA ERAZOR III Pro* optional Video-In und Video-Out unter Windows 98 und Windows 95
- Support über ELSA LocalWeb und Internet
- 6 Jahre Garantie
- Beide Karten erfüllen die Richtlinien der CE- und FCC-Norm
- Volle Kompatibilität mit der 3D-Shutter-Brille *ELSA 3D REVELATOR*

Video-In

- Video-Recording im Vollbildmodus f
 ür PAL- und NTSC-Formate
- Videoschnitt mit dem Sequencer-Programm MainActor (im Lieferumfang enthalten)
- MainActor ermöglicht animierten GIF- und MPEG2-Export
- Internet-Videoconferencing mit Microsoft NetMeeting (im Lieferumfang enthalten)
- Komfortable Anzeige von Videotext (Fernseh-Tuner erforderlich)
- Drei unabhängige Video-Eingänge (1 x S-Video, 2 x Composite)

Video-Out

- Arcade-3D-Grafik für das Spielevergnügen auf dem Fernseher
- Aufnehmen von Spielen oder Anwendungen auf dem Videorecorder
- Simultane Videoschnitt-Kontrolle simultan auf dem Fernseher
- Hochwertige Ausgabe mit 10-bit-DAC und Flicker-Filter
- Zwei parallele Videoausgänge (1x S-Video, 1x Composite)

Alles im Karton?

Wenn die Grafikkarte fehlt, fällt es auf. Aber der Kartoninhalt sollte die folgenden Komponenten umfassen:

- Grafikkarte
- Installation Guide
- Handbuch

Handbuch für die ELSA ERAZOR III LT nur auf CD.

- CD-ROM mit Installations- und Treiber-Software und weiteren Utilities
- CD-ROM mit Direct3D-Demo-Programmen
- Nur bei Grafikkarten mit Videofunktion:
 Kabelpeitsche für den Anschluß von Video-Ein- und -Ausgabegeräten.

Sollten Teile fehlen, wenden Sie sich bitte an Ihren Händler. ELSA behält sich das Recht vor, Änderungen im Lieferumfang ohne Vorankündigung vorzunehmen.

Was brauche ich für Hardware?

- **Rechner**: Als Mindestanforderung benötigen Sie ein System mit Pentium 166 Prozessor oder Kompatiblen. Die *ERAZOR III* zeigt aber erst so richtig, was in ihr steckt, wenn Ihr Rechner mit einem Pentium II bzw. vergleichbaren Prozessor oder höher bestückt ist. Schmalbrüstigere Prozessoren nutzen die Fähigkeiten der Karte nicht völlig aus.
- **Bus**: Die *ERAZOR III* gibt es als AGP-Version. Ihr Rechner muß über einen AGP-Steckplatz verfügen.
- **Monitor**: Die *ERAZOR III* steuert während des Windows-Startvorgangs und im DOS-Betrieb den Monitor IBM-VGA-kompatibel mit 31,5kHz Zeilenfrequenz an.

CE-Konformität und FCC-Strahlungsnorm

CE

Dieses Gerät wurde getestet und erfüllt unter praxisgerechten Bedingungen die Schutzanforderungen nach den Richtlinien des Rates der Europäischen Gemeinschaft zur Angleichung der Rechtsvorschriften der Mitgliedstaaten über die elektromagnetische Verträglichkeit (89/336/EWG) entsprechend der Norm EN 55022 Klasse B.

FCC

Dieses Gerät wurde getestet und erfüllt die Anforderungen für digitale Geräte der Klasse B gemäß Teil 15 der Richtlinien der Federal Communications Commission (FCC).

CE und FCC

Diese Anforderungen gewährleisten angemessenen Schutz gegen Empfangsstörungen im Wohnbereich. Das Gerät erzeugt und verwendet Signale im Frequenzbereich von Rundfunk und Fernsehen und kann diese abstrahlen. Wenn das Gerät nicht gemäß den Anweisungen installiert und betrieben wird, kann es Störungen im Empfang verursachen. Es kann jedoch nicht in jedem Fall garantiert werden, daß bei ordnungsgemäßer Installation keine Empfangsstörungen auftreten. Wenn das Gerät Störungen im Rundfunkoder Fernsehempfang verursacht, was durch vorübergehendes Ausschalten des Gerätes überprüft werden kann, versuchen Sie die Störung durch eine der folgenden Maßnahmen zu beheben:

- Verändern Sie die Ausrichtung oder den Standort der Empfangsantenne.
- Erhöhen Sie den Abstand zwischen dem Gerät und Ihrem Rundfunk- oder Fernsehempfänger.
- Schließen Sie das Gerät an einen anderen Hausstromkreis an als den Rundfunkoder Fernsehempfänger.
- Wenden Sie sich an Ihren Händler oder einen ausgebildeten Rundfunk- und Fernsehtechniker.

Die Federal Communications Commission weist darauf hin, daß Modifikationen an dem Gerät, die nicht ausdrücklich von der für die Zulassung zuständigen Stelle genehmigt wurden, zum Erlöschen der Betriebserlaubnis führen können.

Nach der Treiberinstallation

In diesem Kapitel wird beschrieben,

- wo Sie die Software für den Betrieb Ihrer ELSA-Grafikkarte finden und installieren können,
- die Leistungsdaten Ihrer Grafikkarte,
- wie Sie das Gespann ELSA-Grafikkarte und Monitor optimal aufeinander abstimmen können

Software-Installation von der CD

Die ELSA-Grafikkarte wird standardmäßig mit Software auf CD-ROM geliefert. Die in diesem Handbuch beschriebene Software – sofern sie nicht Bestandteil des Betriebssystems ist – finden Sie auf der ERAZOR III-CD.

Wenn Sie die Schritte im Installation Guide erfolgreich absolviert haben, ist die Grafik-karte bei Ihrem System angemeldet und der ELSA-Treiber installiert worden. In diesem Zusammenhang haben Sie bestimmt auch das ELSA-SETUP kennengelernt. Wenn das Setup nach dem Einlegen der *ERAZOR III*-CD nicht automatisch starten sollte, finden Sie es im Stammverzeichnis der CD unter dem Namen SETUP.EXE.

Das ELSA-Setup erkennt das installierte Betriebssystem und die ELSA-Grafikkarte(n). Markieren Sie die gewünschte Sprachversion, und wählen Sie zwischen der benutzerdefinierten oder der Standardinstallation.

Bei der benutzerdefinierten Installation haben Sie die Möglichkeit, einzelne Komponeten für die Installation auszuwählen.

Die richtige Einstellung

Unser Tip an dieser Stelle: Ein paar Minuten Geduld zahlen sich aus. Nehmen Sie sich die Zeit, um Ihre Systemeinstellungen zu optimieren. Ihre Augen werden es Ihnen danken und die Freude an der Arbeit garantiert größer sein.

Bei der Einstellung Ihres Systems ergeben sich folgende Fragen:

- Auf welche maximale Auflösung kann ich mein System einstellen?
- Mit welcher Farbtiefe sollte ich arbeiten?
- Wie oft sollte sich das Monitorbild neu aufbauen?

Um Ihnen diese Fragen so einfach wie möglich zu beantworten, ist das Kapitel nach Betriebssystemen aufgeteilt. Schlagen Sie einfach unter der Überschrift zu Ihrem Betriebssystem nach. Dort finden Sie alles beschrieben. Die erforderliche Software — soweit sie nicht Bestandteil des Betriebssystems ist — enthält die *ERAZOR III*-CD.

Was ist möglich?

Die folgende Tabelle zeigt die möglichen maximalen Auflösungen Ihrer ELSA-Grafikkarte. Beachten Sie bitte, daß diese Auflösungen nicht unter allen Betriebsbedingungen zu erreichen sind.

ERAZOR III Pro	max. Bildwiederholrate (Hz)		
Farbtiefe:	256 Farben (8 bit)	HighColor (16 bit)	TrueColor (24bit/32bit)
1920 x 1440	60 - 75	60 - 75	60 – 75
1600 x 1200	60 — 160	60 - 90	60 - 90
1280 x 1024	60 — 160	60 – 120	60 – 120
1152 x 864	60 — 160	60 — 160	60 — 160
1024 x 768	60 – 160	60 — 160	60 — 160
800 x 600	60 – 160	60 — 160	60 — 160
640 x 480	60 – 160	60 – 160	60 – 160

HighColor = 65.536 Farben, TrueColor = 16,7 Millionen Farben

ERAZOR III LT	max. Bildwiederholrate (Hz)		
Farbtiefe:	256 Farben (8 bit)	HighColor (16bit)	TrueColor (24bit/32bit)
1920 x 1440	60 – 75	60 – 75	60
1600 x 1200	60 - 85	60 - 85	60 - 85
1280 x 1024	60 – 100	60 — 100	60 – 100

HighColor = 65.536 Farben, TrueColor = 16,7 Millionen Farben

ERAZOR III LT	max. Bildwiederholrate (Hz)		
Farbtiefe:	256 Farben (8 bit)	HighColor (16 bit)	TrueColor (24bit/32bit)
1152 x 864	60 – 140	60 — 140	60 – 140
1024 x 768	60 – 160	60 — 160	60 – 160
800 x 600	60 – 160	60 — 160	60 – 160
640 x 480	60 – 160	60 — 160	60 – 160

HighColor = 65.536 Farben, TrueColor = 16,7 Millionen Farben

Was ist sinnvoll?

Bei der Abstimmung des Grafiksystems gibt es einige Grundregeln, die Sie beachten sollten. Zum einen sind es die ergonomischen Richtwerte, die heutzutage allerdings von den meisten Systemen erreicht werden, zum anderen sind es die systembedingten Limitierungen, die z.B. durch Ihren Monitor vorgegeben sind. Auch spielt es eine Rolle, ob Sie Ihre Applikationen mit einer hohen Farbtiefe — vielleicht sogar in Echtfarben (TrueColor, 32 bit) — betreiben müssen. Bei vielen DTP-Arbeitsplätzen ist das z.B. eine wichtige Voraussetzung. Für Spiele und "normale" Anwendungen unter Windows empfiehlt sich eine HighColor-Einstellung mit 65.536 Farben (16 bit).

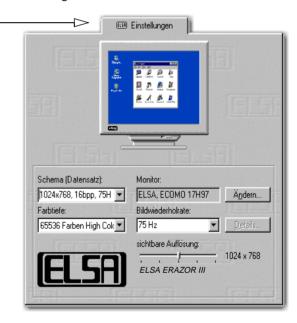
"Mehr Pixel, mehr Spaß"

Diese Ansicht ist weitverbreitet, trifft aber nur bedingt zu. Generell gilt, daß eine Bildwiederholfrequenz von 73 Hz den ergonomischen Minimalanforderungen entspricht. Die einzustellende Auflösung ist wiederum von den Fähigkeiten des Monitors abhängig. Die folgende Tabelle soll eine Orientierung für die zu wählenden Auflösungen geben:

Monitor- diagonale	Typische sichtbare Bilddiagonale	Minimal empfohlene Auflösung	Maximal empfohlene Auflösung	Ergonomische Auflösung
17"	15,5"-16,0"	800 x 600	1024 x 768	1024 x 768
19"	17,5"-18,1"	1024 x 768	1280 x 1024	1152 x 864
20"/21"	19,0"-20,0"	1024 x 768	1600 x 1200	1280 x 1024
24"	21,0"-22,0"	1600 x 1000	1920 x 1200	1600 x 1000

Ändern der Auflösung

Unter Windows stellen Sie die Auflösung für Ihre Grafikkarte in der Systemsteuerung ein.


Windows 95 und Windows 98

Unter Windows 95 und Windows 98 werden die 'EIII Einstellungen' über die Installation der *WINman Suite* Bestandteil des Dialogs 'Anzeige' in der Systemsteuerung. Monitor und Grafikkarte lassen sich damit optimal aufeinander abstimmen.

Die 'EIST Einstellungen' haben einen großen Vorteil: Wenn der Grafikkartentyp vom System erkannt wurde und Sie die Monitordaten angegeben haben, erkennt das Programm automatisch, welche Einstellungen möglich sind. Unter diesen Voraussetzungen ist es ausgeschlossen, daß Sie z.B. eine falsche Bildwiederholrate wählen, mit der Ihr Monitor eventuell Schaden nehmen könnte.

- ① Rufen Sie im **Start**-Menü die Befehle **Einstellungen** ▶ **Systemsteuerung** auf.
- 2 In der Systemsteuerung finden Sie das Symbol für die **Anzeige**. Nachdem Sie dieses gestartet haben, befinden Sie sich im Dialog 'Eigenschaften von Anzeige'.
- (3) Klicken Sie hier auf den Reiter 'ELSFI Einstellungen'

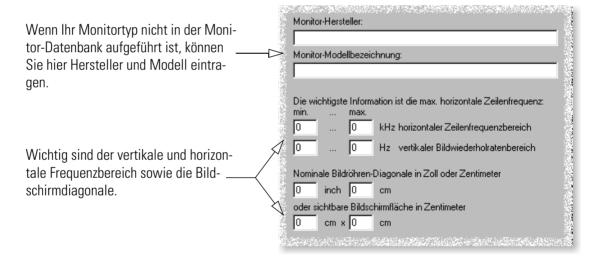
Auf der Karteikarte ' Ess Einstellungen' finden Sie alle Optionen für die optimale Anpassung der Grafikkarte an Ihren Monitor.

9

Unter Windows 98 erreichen Sie die 'ELSE Einstellungen', indem Sie den Reiter 'Einstellungen' auswählen und die Schaltfläche Weitere Optionen... drücken.

Folgende Einstellungen sollten Sie auf jeden Fall der Reihe nach vornehmen bzw. überprüfen:

- den Monitortyp
- die Auflösung des Monitorbildes (Schema, Datensatz)
- die Farbtiefe
- die Bildwiederholrate



Auswahl des Monitors

Wenn Ihr Monitor DDC unterstützt, werden unter Windows 95 und Windows 98 die voreingestellten Auflösungen des Monitors unter 'Schema' angezeigt.

Sollte dies nicht der Fall sein, klicken Sie auf die Schaltfläche Ändern..., um die Monitordatenbank aufzurufen. Dort bekommen Sie eine Liste von Monitorherstellern und typen angeboten. Wenn Ihr Herstellername dabei ist, klicken Sie ihn an und wählen das entsprechende Modell aus. Wenn Ihr Monitor nicht mit aufgeführt ist, haben Sie zwei Möglichkeiten: Sie wählen als Monitorhersteller die erste Position '_Standardmonitor'. Beim 'Monitortyp' entscheiden Sie sich für die höchstmögliche Auflösung des Gerätes. Wenn Sie nicht sicher sind, wählen Sie lieber eine niedrigere Auflösung.

Die zweite Möglichkeit verlangt einfache Kenntnisse über die technischen Daten Ihres Monitors. Ziehen Sie Ihr Monitor-Handbuch zu Rate, um die erforderlichen Angaben parat zu haben. Klicken Sie im Fenster 'Monitor-Datenbank' auf die Schaltfläche **Anderer...**. Neben den Angaben für den Monitor-Hersteller und die Modellbezeichnung müssen Sie die Frequenzbereiche für die horizontale und vertikale Bildfrequenz eintragen und die Diagonale des Monitors angeben.

Die Angaben für die Bildfrequenzen müssen sorgfältig überprüft werden, da ansonsten der Monitor beschädigt werden kann. Ziehen Sie Ihr Monitor-Handbuch zu Rate, oder wenden Sie sich an den Monitor-Hersteller.

Nachdem Sie den Monitor unter Windows angemeldet bzw. eingerichtet haben, können Sie nun die benötigte Farbtiefe, die optimale Auflösung und eine ergonomische Bildwiederholrate einstellen.

Windows NT 4.0

Unter Windows NT 4.0 sind die Einstellungen für die Grafiktreiber Bestandteil der Systemsteuerung. Mit der Befehlsfolge

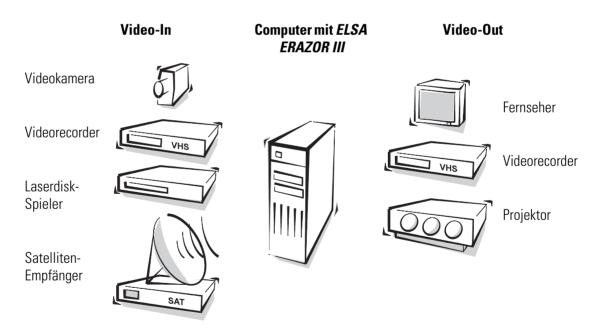
Start ► **Einstellungen** ► **Systemsteuerung**

rufen Sie ein Dialogfenster auf, in dem Sie unter anderem das Symbol **Anzeige** finden. Mit einem Doppelklick auf das Symbol öffnen Sie eine Karteikarte mit verschiedenen Reitern. Klicken Sie auf den Reiter 'Einstellungen'.

Die möglichen Einstellungen für 'Farbpalette', 'Schriftgrad', 'Auflösung' und 'Bildschirmfrequenz' können Sie in diesem Dialogfenster auswählen. Die Auswahl ist durch den installierten ELSA-Treiber vorgegeben. Die gewählte Konfiguration sollten Sie in jedem Fall mit Hilfe der Schaltfläche **Testen** überprüfen.

Weitere Informationen zur Anpassung der Grafikeinstellungen unter Windows NT 4.0 finden Sie in Ihrem System-Handbuch.

Video – Was ist Out, was ist In?

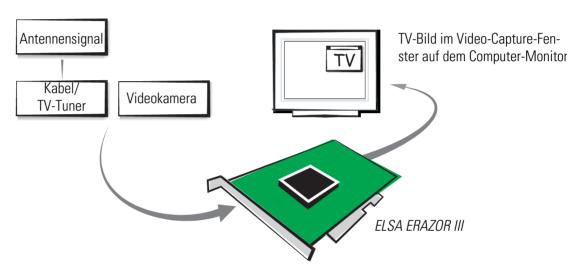


Dieses Kapitel betrifft nur die Grafikkarten, die mit der Videofunktion ausgerüstet sind. Sie können das überprüfen, indem Sie auf der Frontblende der ELSA ERAZOR III die Anschlüsse kontrollieren. Sollte Ihre Karte nur über eine VGA-Ausgangsbuchse verfügen, dürfen Sie natürlich gerne weiterlesen, die beschriebenen Funktionen können Sie jedoch leider nicht nutzen.

Die *ELSA ERAZOR III* verfügt über eine VIDEO-Buchse, an die Sie die mitgelieferte Kabelpeitsche anschließen. Die Buchsen der Kabelpeitsche ermöglichen es, drei Videoquellen und zwei Ausgabegeräte anzuschließen. Mit der Videofähigkeit der Karte – insbesondere der Video-In-Funktion – öffnen sich unter Windows 98 und Windows 95 interessante zusätzliche Möglichkeiten.

Offen für fremde Signale – Ein Überblick

Wie offen sich die *ELSA ERAZOR III* nach allen Seiten zeigt, betrachten wir im folgenden genauer.


Die Abbildung zeigt auf der linken Seite, welche Eingabegeräte an die Grafikkarte angeschlossen werden können. Von den drei Eingängen auf Ihrer ELSA-Grafikkarte sind zwei Composite-Video-Eingänge und einer ein S-VHS-Eingang. Als Eingabesignale können die Video-Standards PAL, NTSC und SECAM verarbeitet werden.

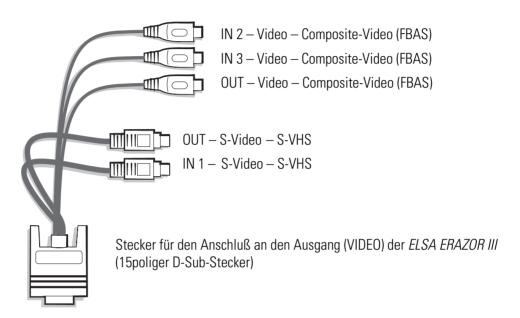
Auf der rechten Seite sehen Sie die Geräte, die in der Lage sind, das VGA-Signal des Computers darzustellen. Über die Video-Out-Buchsen können Sie den Inhalt des Computer-Bildschirms auf ein TV-Gerät, einen Videorecorder oder einen Projektor ausgeben.

Video-In

Damit die *ELSA ERAZOR III* überhaupt reagiert, müssen die Signale eindeutig sein. Es hilft also nicht, wenn Sie mit dem Antennensignal an die *ELSA ERAZOR III* gehen. Das Antennensignal (HF-Signal) transportiert die Information für viele Sendekanäle und kein definiertes Videosignal. Genau das benötigt die *ELSA ERAZOR III*. Wenn Sie also ein Fernsehbild auf Ihrem Monitor darstellen möchten, können Sie nicht den Antennenausgang Ihres Videorecorders nehmen, sondern müssen z.B. den Scart-Ausgang des Videorecorders mit dem Composite-Eingang der *ELSA ERAZOR III* verbinden.

Beispielschema für die Video-Signalverarbeitung der ELSA ERAZOR III

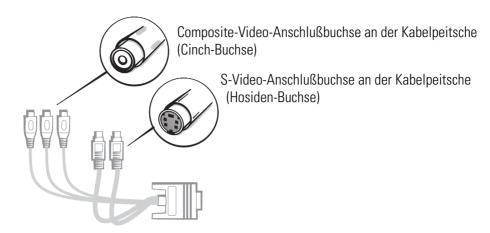
Video-Out


Im Unterschied zu einem Computer-Monitor ist ein Fernsehgerät z.B. nicht in der Lage, die VGA-Signale einer Grafikkarte umzusetzen. Vergleicht man den 15poligen Ausgang für den Monitor mit dem Antennenkabel, das an einen Fernseher angeschlossen ist, wird schnell deutlich: Die Signalaufteilung ist grundverschieden. Auf der *ELSA ERAZOR III* befindet sich deshalb eine Art "Dolmetscher"; ein Chip, der die VGA-Signale umwandelt und für den Fernseher aufbereitet. Dieses fernsehertaugliche Signal wird natürlich auch von anderen Geräten – wie z.B. einem Projektor mit Video-Eingang oder einem Videorecorder – verstanden.

Richtig verbunden?

Auf dem Slotblech der *ELSA ERAZOR III* befindet sich die Videobuchse. An diese Videobuchse schließen Sie die Kabelpeitsche an.

Mit der Kabelpeitsche alles erschlagen


Die im Lieferumfang enthaltene Kabelpeitsche bietet alles, was Sie brauchen: Anschlüsse für Video-In und Video-Out. Verbinden Sie zunächst den breiten Stecker mit der VIDEO-Buchse auf der *ELSA ERAZOR III*. Von diesem Stecker gehen fünf Kabel ab. Jedes Kabel ist mit einem Schrumpfschlauch versehen, auf dem die Belegung der einzelnen Buchsen steht.

Beim Anschluß eines Gerätes an die Kabelpeitsche ist nur zu überlegen:

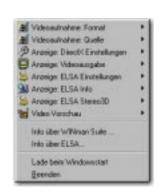
- Welches Gerät möchte ich anschließen?
 - Eingabegerät, z. B. eine Videokamera
 - Ausgabegerät, z. B. ein Videorecorder
- Welche Anschlüsse hat das Gerät?
 - S-VHS (Y/C) und/oder
 - Composite-Video (FBAS).

Wenn das Gerät über einen S-VHS- und einen Composite-Video-Anschluß verfügt, ist der S-VHS-Anschluß vorzuziehen.

Einige Videorecorder und Fernsehgeräte verfügen nur über eine sogenannte SCART-Buchse. In diesem Fall benötigen Sie für die Verbindung mit der ELSA ERAZOR III einen speziellen Adapter nach S-Video oder Composite. Hier hilft Ihnen der Radio-Fernseh-Fachhandel weiter.

Wenn Sie bei der Beantwortung dieser Fragen auf Probleme stoßen, orientieren Sie sich in der Bedienungsanleitung zu dem betreffenden Gerät, oder informieren Sie sich bei Ihrem Fachhändler.

Anschluß eines TV-Gerätes


Sie können jedes handelsübliche TV-Gerät mit einem Videoeingang an die *ELSA ERAZOR III* anschließen. Lesen Sie in der Betriebsanleitung zu Ihrem Fernseher nach, welche Video-Standards das Gerät unterstützt. An die *ELSA ERAZOR III* können sowohl PAL- als auch NTSC-Geräte angeschlossen werden.

ELSA-Video-Einstellungen

Neben den ELSA-Video-Einstellungen, die sehr detaillierte Einstellungen für Video-In und Video-Out ermöglichen, sollten Sie auch einen Blick auf das ELSA VideoControl werfen. Mit ELSA VideoControl erhalten Sie mehr als eine komfortable Zentrale für die Steuerung der Video-In- und Video-Out-Funktionen.

Video-In

Wenn Sie die *ERAZOR III WINman Suite* und das 'ELSA Video-In/Out Utility' installiert haben, erscheint unten rechts in der Task-Leiste auf Ihrem Bildschirm ein ELSA-Symbol in der Task-Leiste auf Ihrem Bildschirm ein ELSA-Symbol in Klick auf dieses Symbol öffnet ein Auswahlfenster, von dem aus auch die Befehle für die Video-Einstellungen aufzurufen sind. Mit den ELSA-Video-Einstellungen läßt sich die Video-Ein- und -Ausgabe der *ELSA ERAZOR III* definieren und einstellen. Die folgenden Optionen können Sie festlegen:

- Die Signalquelle ('Videoaufnahme: Quelle')
- Die Videodarstellung ('Videoaufnahme: Quelle')
- Die Video-Auflösung für die Aufnahme ('Videoaufnahme: Format')
- Ein Vorschaufenster für das Signal am Video-Eingang ('Video und Videotext Vorschau')

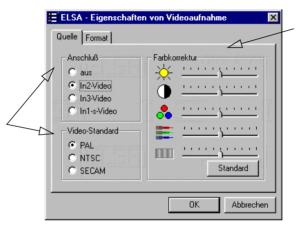
Wenn Sie ein Video-Eingabe-Gerät an die *ELSA ERAZOR III* angeschlossen haben, müssen Sie Einstellungen unter 'Videoaufnahme: Format' und 'Videoaufnahme: Quelle' vornehmen.

Das Videobild auf dem Computermonitor

So verlockend das Aufzeichnen von Videomaterial ist, wir machen Sie darauf aufmerksam, daß urheberrechtlich geschützte Materialien nicht ohne Genehmigung kopiert oder dupliziert werden dürfen. ELSA übernimmt keine Verantwortung für Urheberrechtsverletzungen!

Sie können jede handelsübliche Videokamera oder jedes Videogerät an die Grafikkarte anschließen. Verbinden Sie den Video-Ausgang des Gerätes mit der passenden Buchse auf dem Slotblech der Grafikkarte. Durch die unterschiedliche Form eines Compositebzw. S-Video-Steckers besteht keine Gefahr, die Eingangsbuchsen zu verwechseln.

Achten Sie beim Anschließen einer Videokamera mit S-VHS-Ausgang (S-Video) darauf, daß Sie die Ein- und Ausgangsbuchse der Kabelpeitsche nicht verwechseln.


Der Video-Eingang der *ELSA ERAZOR III* ist kompatibel zu Video für Windows. Es sollte also jede Anwendung funktionieren, die diesen Standard unterstützt.

Wenn Sie die Videoquelle angeschlossen, Ihren Rechner gestartet und Windows geladen haben, klicken Sie in der Task-Leiste unten rechts auf das ELSA-Symbol und wählen in dem Auswahlfenster den Befehl **Videoaufnahme: Format** Start

Videoaufnahme: Quelle

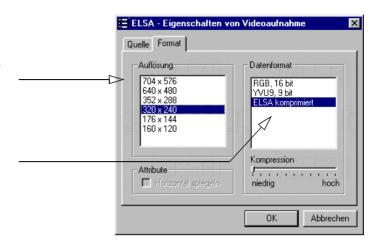
Auf der Karteikarte 'ELSA - Eigenschaften von Videoaufnahme' müssen Sie nun festlegen, welche Videoquelle Sie auswählen möchten. Die Einstellmöglichkeiten der Farbregelung ermöglichen die Anpassung des Eingabesignals. Dies betrifft Helligkeit, Kontrast, Sättigung, Bildschärfe und Farbton. Die Einstellung für den Farbton (Hue) ist allerdings nur für NTSC-Eingangssignale wirksam.

Was nicht reinkommen soll, bleibt draußen. Nach diesem Motto legen Sie fest, welche Videoquelle angezeigt werden soll und welchen Video-Standard diese Quelle hat.

Mit den Reglern für die Farbkorrektur beeinflußen Sie ausschließlich das Videobild.

Markieren Sie unter 'Video-Standard' **PAL**, **NTSC** oder **SECAM**. PAL ist der in Europa übliche Video-Standard. Das Handbuch zu Ihrem Videogerät oder zu der Videokamera hilft Ihnen im Zweifel weiter.

Im Gruppenfeld 'Anschluß' wählen Sie, welcher Video-Eingang aktiv sein soll. Sie können z.B. an den beiden Composite-Eingängen (In2-Video und In3-Video) jeweils einen Videorecorder anschließen und an den S-VHS-Eingang (In1-S-Video) eine Videokamera. Durch Anklicken des entsprechenden Eingangs bestimmen Sie, welche Videoquelle Ihr Signal an die *ELSA ERAZOR III* schickt.


Videoaufnahme: Format

Wenn Sie auf den Reiter 'Format' klicken, erhalten Sie eine Auswahl der möglichen Videoauflösungen. Wählen Sie die gewünschte Auflösung für die Videodarstellung und

-aufnahme, und bestätigen Sie Ihre Einstellungen mit **OK**. Eine Beschreibung der verschiedenen Formate für die Datenkompression finden Sie auf 29.

Die für die Darstellung auf dem TV-Gerät unterstützten Auflösungen können Sie in diesem Fenster auswählen.

Die verschiedenen Kompressionsverfahren sorgen dafür, daß Ihr Datenträger nicht so schnell "überläuft". Das Datenvolumen kann so deutlich reduziert werden.

Wie kommt das Videobild auf den Computer-Monitor?

Auf der *ERAZOR III*-CD befinden sich Programme, mit denen Sie das Videobild darstellen können. Eine besonders attraktive Anwendungsmöglichkeit beim Anschluß der Videokamera ergibt sich in Verbindung mit Microsoft NetMeeting (→Seite 21). Über ein TCP/IP-Netzwerk oder eine Telefonverbindung können Sie Konferenzen schalten, die auch Videoinformationen übertragen. So läßt sich z.B. bei einer Konferenz das Videobild der Teilnehmer einblenden. Mit dem Programm MainActor, das Sie ebenfalls auf der *ERAZOR III*-CD finden, können ganze Videosequenzen aufgenommen werden. Spezielle Formate ermöglichen die Einbindung animierter Videosequenzen auf Internet-Seiten (→Seite 22).

Keine Idee?

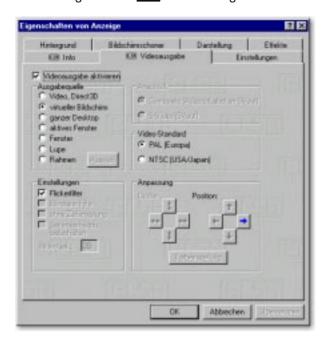
Mit der Videoschnittstelle auf der Grafikkarte erschließt sich eine ganz neue Welt der Möglichkeiten. Wer vor lauter Optionen nicht die Applikationen sieht, dem seien im folgenden einige Tips und Ideen gegeben.

Was ist IN?

- Mit der Kamera können Sie
 - Internet-Videokonferenzen mit Microsoft NetMeeting halten. Ihr Bild verleiht Ihrer Meinung mehr Nachdruck. Die Konferenzteilnehmer können sich sehen und das "Conferencing" wird lebendiger.
 - Videos aufnehmen und mit Hilfe von MainActor zu einem multimedialen Ereignis machen.
- Mit dem Videorecorder können Sie

- Live-Video oder TV auf Ihrem Desktop laufen lassen. Der Nachrichtenticker oder der aktuelle Videoclip Ihrer Lieblings-Band laufen in einem Extrafenster auf dem Monitor mit.
- Aufnahmen von Einzelbildern oder Videosequenzen vom Videorecorder machen.
 Mit MainActor können Sie wertvolles Archivmaterial aufnehmen und bearbeiten.
 Die digitalen Bilder lassen sich nach Belieben manipulieren.

Was ist OUT?


- Mit dem TV-Gerät können Sie
 - endlich die Spiele-Action im Großformat erleben. Eine Sound-Karte macht den Spielspaß dann zum multimedialen Vergnügen.
 - das Aufnahmebild des Videorecorders kontrollieren.
- Mit dem Videorecorder können Sie
 - Spielesequenzen als Video aufnehmen. Ihr heroischer Kreuzzug gegen das Imperium wird auf Magnetband verewigt. Oder Sie bauen einige digitale Specials in das Familienvideo ein.

Das Monitorbild auf TV/Video

Das, was auf dem Computer-Monitor dargestellt wird, können Sie auch auf Video, TV und Projektor ausgeben. Das ganze Bild oder auch nur Teile des Bildes, z.B. das Anwendungsfenster einer Applikation.

(1) Rufen Sie über

Start ➤ Einstellungen ➤ Systemsteuerung ➤ Anzeige

das Dialogfenster 'ELSFI -Videoausgabe' auf.

- Überprüfen Sie zunächst, ob die Videoausgabe aktiviert ist.
- (3) Kontrollieren Sie dann den eingestellten Video-Standard. Gegebenenfalls müssen Sie hier zwischen PAL und NTSC umschalten.
- 4 Legen Sie unter 'Anschluß' fest, ob Sie das Adapterkabel für den Anschluß an einen Composite-Eingang verwendet haben oder ein S-Video-Gerät angeschlossen ist.

Sollte auf Ihrem Fernseher nur ein Schwarzweiß-Bild erscheinen, rufen Sie in dem Dialogfenster 'ELSE -Videoausgabe' mit der Schaltfläche **Farbeinstellung** ein weiteres Fenster auf. Mit Hilfe des Schiebereglers in diesem Fenster kann eine Anpassung der Farbträgerfrequenz vorgenommen werden. Bewegen Sie die Markierung probeweise nach links oder rechts, bis Sie ein farbiges und stabiles Bild auf dem Fernseher erhalten.

Wenn Sie die Videoausgabe nicht benötigen, sollten Sie die Funktion auf jeden Fall abschalten. Je nach Modus werden bei eingeschalteter und nicht verwendeter Videoausgabe CPU und Grafikprozessor unnötig belastet.

Spätestens jetzt sollte Ihr Monitorbild auch auf dem Video-Ausgabegerät erscheinen. Im Gruppenfeld 'Ausgabequelle' finden Sie nun zahlreiche Möglichkeiten, den Ausschnitt des darzustellenden Bildschirmbereiches festzulegen. Unter 'Einstellung' und 'Anpassung' können Sie Darstellungsqualität, Lage und Position des Bildes weiter optimieren.

Nützliches und mehr

Neben den ELSA-Treibern enthält die *ERAZOR III*-CD Zusatz- und Hilfsprogramme, die Sie beim Einsatz der *ELSA ERAZOR III* unterstützen. Eine Auswahl stellen wir Ihnen hier vor. Informationen zu den anderen Programmen können Sie der LIESMICH-Datei auf der CD entnehmen.

Der Multimedia Player

Bislang konnten Sie im Multimedia-Fach des Zubehör-Ordners aus dem Start-Menu von Windows verschiedene Programme für die CD-Wiedergabe, das Abspielen von Videos und die Medienwiedergabe finden. Die Nachfolge tritt nun der Multimedia Player von Microsoft an. Er verwaltet die bekanntesten Multimedia-Formate unter einer Oberfläche. Ob online aus dem Internet oder lokal von der Platte: Der Multimedia Player fühlt sich sowohl für die Wiedergabe von RealAudio- und RealVideo-Dateien als auch für WAV-, AVI- und Quicktime-Dateien zuständig.

Videowiedergabe oder Internet-Live-Radio: Der Microsoft Multimedia Player beherrscht alle gängigen Multimedia-Formate.

Nach der Installation existiert eine feste Verknüpfung zwischen den Namenserweiterungen von Mediadateien und dem Multimedia Player. Sie können also bequem vom Explorer oder Ihrem Arbeitsplatz aus mit einem Doppelklick auf die Mediadateien den Player starten und die Datei abspielen lassen.

Der Multimedia Player läßt sich intuitiv bedienen und bietet eine ausführliche Hilfefunktion, mit der Sie Probleme oder Fragen während der Arbeit mit dem Programm klären können.

Videokontrolle de Luxe

Mit dem Tool ELSA VideoControl steht Ihnen ein Programm zur Verfügung, das nicht nur gut aussieht, sondern auch nützliche Funktionen unter seiner ansehnlichen Oberfläche bereithält.

Übrigens, ELSA VideoControl ist nach dem offenen Schnittstellenstandard WDM (Windows Driver Model) aufgebaut. Wer will und kann, ist damit in der Lage, eigene Erweiterungen zu programmieren oder im Internet zu stöbern, ob nicht bereits jemand anders kreativ war.

Die Programmoberfläche ist in mehrere funktionelle Sektionen unterteilt

Video-In-Sektion

Welche Videoquelle wähle ich? Sollte das Eingangssignal angepaßt werden?

Control-Sektion

Video-Start oder Video-Stop? Vor, Zurück oder Pause? Aufnahme, Pegelkontrolle oder Videotext-Ausgabe?

Aufnahme-Sektion

Video-Out-Sektion

Welchen Aufnahmemodus wähle ich?

Wie soll die Video-Ausgabe erfolgen?

Im Detail – die Bedienung

Die Bedienung des ELSA VideoControl erfolgt intuitiv mit der Maus. Mit gedrückter linker Maustaste "fassen" Sie die Regelelemente an und können die Einstellung durch Mausbewegungen ändern. Ein Tip: Mit der rechten Maustaste können Sie die Schieberegler zusammen bewegen und bei einigen Tasten ('HTML' oder 'Wcam') das Ablageverzeichnis auswählen.

Video-In-Sektion

Bis zu 3 externe Eingangssignale können mit ELSA VideoControl verwaltet werden. Zusätzlich lassen sich Dateien im AVI-Format oder dem neuen Motion-JPEG-Verfahren (MJPEG) abspielen sowie jedes andere Format, für das der entsprechende Codec auf Ihrem System installiert ist. Zunehmend interessanter wird auch die DVD-Unterstützung. Voraussetzung zum Abspielen von DVD-Videos ist neben dem Laufwerk ein installierter DVD-Decoder wie z.B. *ELSAmovie*.

Die 2D-Fadenkreuze ermöglichen für die Video-Eingänge 1-3 eine Anpassung von Farbsättigung und -ton (Color) sowie Helligkeit und Kontrast (Brillance). Mit den Schiebereglern verändern Sie den Pegel des Signals für den Audio-Eingang.

Aufnahme-Sektion

Beim Aufnahme-Modus können Sie zwischen 'Video' und 'Single' wählen. Im Video-Modus wird – sobald Sie den Record-Button betätigen – in den Vollbildmodus geschaltet und die Aufnahme im MJPEG-Format aufgezeichnet. Als kleiner Anhaltspunkt: Ein 90-Minuten-Spielfilm in VHS-Qualität belegt nach diesem Kompressionsverfahren unter 3GB Plattenspeicher.

Die Schieberegler gehören zu den Tasten **Timed** und **Wcam**. Wenn 'Timed' aktiv ist, können Sie die Aufnahmedauer mit Hilfe des Schiebereglers festlegen. Die gewählte Zeit wird im Monitorfenster angezeigt. Die Funktion 'Wcam' ermöglicht Ihnen, alle x Sekunden ein Einzelbild zu speichern. Die Stellung des Schiebereglers legt den Zeitpunkt fest. Sie können zwischen 1s oder 1h wählen.

Video-Out-Sektion

Mit einem Klick auf die Taste **Vonly** legen Sie das Signal auf den Video-Ausgang. Eine Funktion, die besonders dann hilfreich ist, wenn Sie z.B. in Mainactor weiterarbeiten wollen, während auf dem Fernseher das Vollbild kontrolliert werden kann. Mit der Taste **Full** schalten Sie das Videobild auf Ihrem Monitor in den Vollbildmodus.

Control-Sektion

Jeder, der schon mal einen Video- oder Cassettenrecorder bedient hat, weiß sofort Bescheid. Die Tasten für die Videosteuerung erklären sich von selber. Wir lassen hier bewußt eine Dokumentationslücke bis auf den Hinweis, daß die Taste ' automatisch "zurückspult".

Interessant wird es beim Thema Videotext. Wenn Sie die Taste ' klicken, blendet sich zusätzlich ein Videotextfenster ein. Sollte das Vorschau-Fenster schwarz bleiben, könnte der Fehler an den Kabelverbindungen liegen. Überprüfen Sie in jedem Fall, an welchem Video-Eingang der Fernseh-Tuner liegt und ob dieser Eingang auch als Videoquelle aktiviert wurde.

Um Videotext empfangen zu können, müssen Sie an einen der Video-Eingänge einen Fernseh- oder Satelliten-Tuner angeschlossen haben.

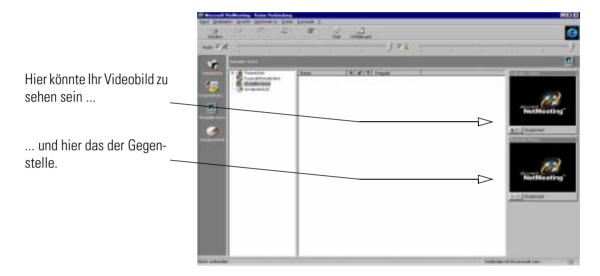
Die Schaltfläche 'HTML' bewirkt, daß die Videotextseite als HTML-Datei gespeichert wird. Das Verzeichnis bestimmen Sie selbst – die Dateien finden Sie dort unter dem Sendernamen und einer laufenden Nummer.

Auf Infosuche – Der Videotextdecoder

Die Bedienung des Videotextdecoders (Browser) ist schnell erlernt. Das Wichtigste vorab: Ihre Videotext-Sitzung kann komplett mit der Maus geführt werden. Klicken Sie einfach doppelt auf die dreistellige Nummer der Seite, die Sie gerne öffnen möchten. Natürlich können Sie auch über die Tastatur die gewünschten Seiten aufrufen. Geben Sie einfach die Nummernfolge ein – sofort beginnt der Browser mit der Suche.

Egal, ob Sie auf die Nummerneinträge oder auf einen beliebigen Begriff doppelklicken: Der Browser nimmt den angeklickten Eintrag und sucht die nächste Seite, auf der dieser Eintrag vorkommt. Das können neben den Nummernseiten auch Seiten mit dem entsprechenden Suchbegriff sein.

Eine besonders pfiffige Lösung: Der Videotext als Active-Desktop-Fenster. Behalten Sie die Börsenkurse online im Auge, ohne Online-Gebühren entrichten zu müssen – ein Vorteil von Videotext.



Nett, Meeting!

Auf der *ERAZOR III-CD* finden Sie das Conferencing-Programm 'NetMeeting' von Microsoft. Damit läßt sich einiges anstellen. Einen kleinen Überblick soll die folgende Liste geben.

Mit NetMeeting können Sie z.B.:

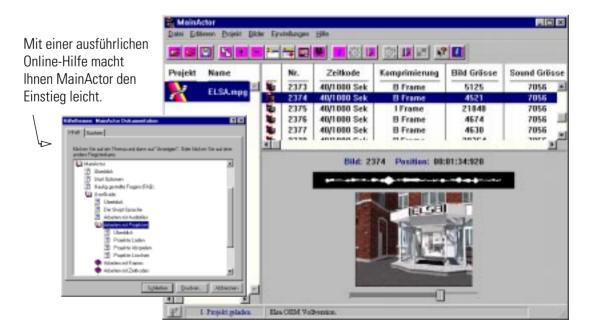
- beliebige Personen über ein Netzwerk oder ein Modem anrufen
- Unterhaltungen über das Internet führen
- die Person sehen, die Sie über ein Modem oder Netzwerk anrufen
- mit anderen zusammen in einer Anwendung arbeiten (Application-Sharing)
- das Whiteboard verwenden, um in einer Online-Konferenz zu zeichnen
- in 'Chat' schriftliche Nachrichten senden
- eine Anrufverknüpfung erstellen, damit andere Personen Sie von Ihrer Webseite aus anrufen können
- Dateien an alle Teilnehmer einer Konferenz senden

An den Video-Eingang der *ELSA ERAZOR III* können Sie eine Videokamera anschließen. Das Bild – wenn Sie mutig sind, das eigene – läßt sich während einer Konferenz mit Microsoft NetMeeting einblenden.

Mit der Taste F1 oder dem Menübefehl ? können Sie die Online-Hilfe von NetMeeting aufrufen. Hier erfahren Sie mehr über das Programm.

MainActor – Der Hauptdarsteller

Das bestimmen Sie! Auf der CD befindet sich das Programm MainActor. Das Programm besteht aus drei Modulen, mit denen Sie Video-Produktionen erstellen können, die auch gehobenen Ansprüchen genügen.

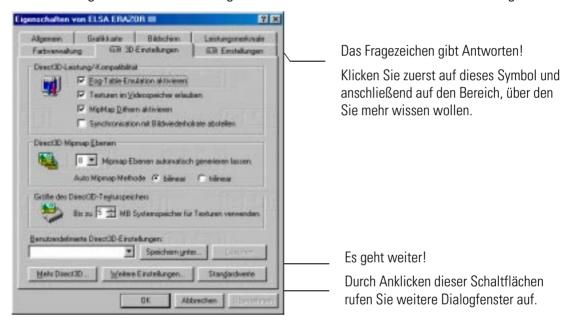

Der Sequencer

MainActor Sequencer ist ein professioneller Video-Sequenzer, der es Ihnen erlaubt, mühelos Videos mit Sound, Animation, Titeln und Videoclips herzustellen. Zusätzlich stehen Ihnen aufwendige Effekte wie Filter und 3D-Moving-Pfade zur Verfügung. I

Der Video-Editor

Mit dem Video-Editor können Sie Animationen, Bilder und Sounds jeglicher Größe einladen, editieren, abspielen und in die verschiedensten Formate konvertieren. Editierte Projekte lassen sich als neue Animationen oder Bilder speichern.

Der Viewer


MainView ist der externe Abspieler von MainActor. Er wird verwendet, falls man Videos nur Abspielen möchte, ohne sie in MainActor einladen zu müssen. MainView kann auch aus anderen Programmen aufgerufen werden.

Mit der Taste F1 oder dem Menübefehl **Hilfe** können Sie die Online-Hilfe von MainActor aufrufen. Hier erfahren Sie mehr über das Programm.

Feintuning für Performance-Puristen

Mit der Installation des ELSA-Grafiktreibers unter Windows 95 und Windows 98 finden Sie in den 'Eigenschaften von Anzeige' einen neuen Reiter: Die 'ELSBI 3D-Einstellungen'.

Da Windows 98 den Betrieb von mehreren Grafikkarten zuläßt, liegen die 3D-Einstellungen für die ERAZOR III an anderer Stelle. Wählen Sie unter 'Eigenschaften von Anzeige' den folgenden Weg: 'Einstellungen' **Weitere Optionen** 'IIII 3D-Einstellungen'.

Mit Hilfe dieser Einstellungen läßt sich die Spiele-Performance auf Ihrem System optimieren. Normalerweise können Sie alles so belassen, wie es ist. In einigen Fällen, wenn Sie z. B. Darstellungsprobleme oder Geschwindigkeitsverluste feststellen, können Sie die Direct3D-Parameter oder andere Einstellungen anpassen. Für jedes Spiel lassen sich

auf diesem Weg die optimalen Werte unter einem eigenen Namen speichern und schnell wieder abrufen, ohne das System neu starten zu müssen

Was einmal gespeichert wurde, läßt sich auch wieder abrufen: Die individuelle 3D-Konfiguration für Ihr Spiele-Archiv finden Sie in der ELSA WINman Suite.

Experimentierfreudigkeit kann sich hier auszahlen, um Ihrer Spielfigur ein bißchen mehr Spritzigkeit und damit Chancen gegenüber anderen Mitspielern zu verschaffen. Wer vor den teilweise kryptischen Bezeichnungen zurückschrecken sollte, kann sich zum einen im Glossar dieses Handbuches orientieren oder auf die ausführliche Hilfe zurückgreifen. Wählen Sie einfach das Fragezeichen-Symbol in der oberen rechten Ecke des Dialogfensters, und klicken Sie mit dem Cursor auf den fraglichen Eintrag. Sollten Sie feststellen, daß Sie Ihr System ungewollt auf die Kriechspur gebracht haben, gibt es auch hier die Nottaste **Standardwerte**. Damit lassen sich die Vorgabewerte wiederherstellen.

Grafik-Know-how

In diesem Kapitel steigen wir richtig ein. Wer mehr zum Thema Grafik – gerade im Zusammenhang mit der *ELSA ERAZOR III* – erfahren möchte, findet hier die technischen Hintergründe erörtert.

3D-Grafikdarstellung

Heute gehört es zum guten Ton, über das Thema 3D Bescheid zu wissen. Spätestens die ersten visuellen Erlebnisse mit der neuen Grafikkarte schüren die Neugier. Es fallen vor allem zwei Eigenschaften bei der 3D-Darstellung auf: realistisch und schnell. Welche Arbeit dabei geleistet wird, weiß nur der Prozessor und ist im folgenden Abschnitt detailliert beschrieben.

Die 3D-Pipeline

Was passiert genau, wenn ein 3D-Objekt am Monitor dargestellt werden soll? Die Daten, die das 3D-Objekt beschreiben, durchlaufen die sogenannte 3D-Pipeline, in der die mathematischen Berechnungen für die räumliche und perspektivische Darstellung auf dem Monitor angestellt werden. Was passiert im einzelnen?

Objektdaten Tesselation Geometrische Transformation Rendering Darstellung auf Monitor

Start: Die Objektdaten

Am Anfang der Pipeline steht das Objekt. Die Objektbeschreibung setzt sich aus den Daten (Punkten) zusammen.

Tesselation

Im ersten Schritt wird das Objekt in eine Vielzahl von Polygonen bzw. Dreiecken zerlegt. Die Eckpunkte der Dreiecke werden mit Koordinatenpunkten (x, y und z) beschrieben, wobei der Wert 'z' die Tiefeninformation enthält. Diese Punkte erhalten je nach Darstellung zusätzlich noch Informationen über Material und Textur. Durch diese Umrechnung der Bildinformation erhöht sich die zu verarbeitende Datenmenge immens.

Geometrische Transformation

Dieser Teil der 3D-Pipeline ist sehr rechenaufwendig, da hier die gesamte Berechnung der 3D-Szenerie stattfindet. Vereinfacht betrachtet sind es die folgenden Schritte:

- **Transformation** Bei der Transformation werden die Objekte, vom Blickwinkel des Betrachters gesehen, perspektivisch ausgerichtet.
- **3D-Clipping** Bei diesem Prozeß wird jedes Polygon überprüft, ob es teilweise sichtbar oder nicht sichtbar ist. Die nicht sichtbaren Flächen oder Teilbereiche des Objekts werden entfernt.
- Back-Face-Culling Dieser Prozeß berechnet verdeckte Flächen, die sich aus der Betrachtungsperspektive ergeben. Jedes zu zeichnende Objekt, dessen Vorderseite nicht sichtbar ist, wird weggelassen.
- **Beleuchtung** Es wird die Beleuchtung der Szene durch unterschiedliche Lichtquellen berechnet.
- **Skalierung auf dem Bildschirm** Die Schritte vorher werden noch mit Hilfe von normierten Koordinaten im dreidimensionalen Raum berechnet. Erst jetzt werden die tatsächlichen Bildschirmkoordinaten errechnet.

Rendering/Rasterization

An dieser Stelle wird die 3D-Szene mit Farbverläufen gefüllt und Texturen werden aufgetragen. Auch hier findet man unterschiedliche Prozesse und Methoden.

- **Shading** Das Shading berücksichtigt die Effekte, die sich durch Beleuchtung der 3D-Objekte aus verschiedenen Lichtquellen ergeben und sorgt für einen sehr realistischen Gesamteindruck. Auch hier existieren unterschiedliche Verfahren, die mehr oder weniger rechenintensiv sind:
 - Das Flat-Shading weist jedem Polygon einen Farbwert zu. Es ergibt sich eine facettenartige Darstellung, die nur eine kurze Berechnungszeit erfordert.
 - Beim Gouraud-Shading erhalten alle Eckwerte der Polygone einen Farbwert. Die Farbe der Pixel innerhalb des Polygons wird aus den Eckwerten interpoliert. Diese Methode ergibt einen sehr weichen Farbverlauf bei gleicher Anzahl von Polygonen.
- Texture-Mapping Hier erfährt das 3D-Objekt eine Art "Face lifting". Die Materialien und Texturen werden zugewiesen. Hierbei werden verschiedene Methoden eingesetzt, um die Texturen auch bei vergrößerter oder verkleinerter Darstellung noch originalgetreu wiederzugeben. Im ersten Schritt werden die Texturen berechnet:
 - Die einfachste Methode stellt das Point-Sampling dar. Zwischen der Texturvorlage und der zu füllenden Fläche wird pixelweise verglichen. Insbesondere bei vergrößerter Darstellung führt diese Methode zu einer sehr groben Darstellung.
 - Beim bilinearen Filtering wird aus den benachbarten Bildpunkten einer Textur, den Texeln, ein neuer Farbwert berechnet. Dies führt zu einem etwas besseren

Ergebnis als beim Point-Sampling, da die harte Abgrenzung zwischen den groben Pixeln verwischt ist.

- Das MIP-Mapping-Verfahren speichert eine Vielzahl von Verkleinerungsstufen (Level of Detail) der Textur. Anhand der Tiefeninformation eines Primitivs wird dann entschieden, welche Stufe der Textur zum Zeichnen Verwendung finden. Über den Alpha-Kanal der Textur wird die Information über die Transparenz transportiert. Schließlich unterscheidet man beim MIP-Mapping noch die bilineare und trilineare Filterung. Die bilineare Filterung interpoliert zwischen zwei Punkten zweier Texturen, beim trilinearen Filtern wird zwischen jeweils vier Punkten von zwei Texturen interpoliert.
- Das Bump-Mapping führt eine neue Dimension ein. Reliefartige Texturen werden mit Licht- und Schatteneffekten erzeugt. Beim Displacement-Mapping erhält die Textur zusätzlich eine Höheninformation, wodurch sich sehr realistische dreidimensionale Effekte umsetzen lassen.

Der Treppeneffekt schräger Linien und Kanten wird durch das Anti-Aliasing ausgeglichen. Dies geschieht durch Interpolation von Mischpixeln, bei der aus benachbarten Farbwerten ein neuer berechnet wird.

Der Frame-Buffer

Erst wenn diese aufwendige Schrittfolge abgeschlossen ist, liegt das fertige Bild im Frame-Buffer. Der Frame-Buffer teilt sich wiederum in Front-Buffer und Back-Buffer. Der Back-Buffer fungiert innerhalb des Frame-Buffers als Zwischenspeicher, in dem immer das nächstfolgende Bild aufgebaut wird. Der Front-Buffer ist der Speicherbereich, in dem das Bild steht, das auch auf dem Monitor erscheint. Dadurch wird verhindert, daß der Bildaufbau sichtbar ist. Das Verfahren des doppelten Speichers wird auch als Double-Buffering bezeichnet.

Page-Flipping: Die Darstellung auf dem Monitor

Das im Back-Buffer gespeicherte Bild gelangt nun in den Front-Buffer, dessen Inhalt auf dem Monitor angezeigt wird. Diesen Vorgang bezeichnet man als Flipping. Im Gegensatz zum Double-Buffering wird der Inhalt des Back-Buffers nicht in den Front-Buffer übertragen und zur Anzeige gebracht, sondern abwechselnd der Front- oder Back-Buffer angezeigt.

Das nächste Bild wird immer erst dann dargestellt, wenn der Bildaufbau im Back-Buffer abgeschlossen ist. Für eine ruckelfreie Darstellung von 3D-Szenarien sollte dieser Vorgang mindestens 20mal in der Sekunde erfolgen. Man spricht in diesem Zusammenhang von frames per second (fps) – also Bilder pro Sekunde –, die gerade für 3D-Anwendungen eine aussagekräftige Größe darstellen. Ein Kinofilm läuft übrigens mit 24fps.

3D-Schnittstellen

Software-Schnittstellen, wie auch die 3D-Schnittstellen, werden im Englischen als API bezeichnet (Application Program Interface). Die Frage ist nun, wozu diese Schnittstellen verwendet werden und wie sie funktionieren.

Einfach gesagt: Sie erleichtern den Entwicklern ihre Arbeit. In der Vergangenheit mußten die einzelnen Hardware-Komponenten bei der Programmierung direkt angesprochen werden, wollte man deren Möglichkeiten völlig ausschöpfen. APIs sind genormte Schnittstellen, die den Informationsfluß zwischen Hardware und Software ermöglichen.

Voraussetzung dafür, daß diese Vermittlung funktioniert, war die Festlegung einheitlicher Definitionen. Diese Definitionen werden von den Hardware-Herstellern bei der Entwicklung verwirklicht und auf die Hardware individuell abgestimmt. Mit Hilfe dieser Definitionen kann der Entwickler komplizierte Vorgänge relativ einfach realisieren. Bei der Programmierung kann er auf einen einheitlichen Befehlsvorrat zurückgreifen, ohne daß die hardwaretypischen Charakteristika bekannt sein müssen.

Welche APIs gibt es?

Es gibt ein gutes Dutzend mehr oder weniger verbreiteter 3D-APIs. Mittlerweile haben sich jedoch einige wenige Formate als Favoriten etabliert: Direct3D, OpenGLund in der Spieleszene die Glide-Schnittstelle. ELSA-Grafikkarten unterstützen die gängigen 3D-Schnittstellen. Der funktionelle Unterschied zwischen den Schnittstellen ist gering. Ihre ELSA ERAZOR III unterstützt die folgenden APIs:

Direct3D

Als Nachfahre von Mode X und von DCI unter Windows 3.1x ist Direct3D ein Sproß aus der DirectX-Multimedia-Familie, die direkt für Windows 95 entwickelt wurde, um die langsame 3D-Darstellung des Betriebssystems zu beschleunigen. Bei der dreidimensionalen Darstellung kooperiert Direct3D mit DirectDraw. Eine typische Situation wäre z.B. das Rendern eines 3D-Objektes, während DirectDraw eine zweidimensionale Hintergrund-Bitmap plaziert.

Immediate Mode und Retained Mode

Wie beide Bezeichnungen schon vermuten lassen, handelt es sich beim Immediate Mode (immediate: unmittelbar) um einen hardwarenahen Programmiermodus, beim Retained Mode (retain: zurückbehalten) hingegen um einen Programmiermodus, der über eine API-Schnittstelle weitgehend vordefiniert ist. Was bedeutet das im einzelnen? Wenn man die beiden Systeme hierarchisch betrachtet, wird der Immediate Mode auch als Low-Level-Modus bezeichnet. Die Ebene der Programmierschnittstelle liegt nah an der Hardware-Ebene und erlaubt dem Programmierer einen direkten Zugriff auf spezielle Funktionen der jeweiligen Hardware-Komponente. Der Retained Mode (High-Level-Modus) ermöglicht

z.B., ein definiertes 3D-Objekt mit Texturen in eine Windows-Applikation zu laden. Dort kann es mit Hilfe von einfachen API-Befehlen manipuliert und bewegt werden. Die Umsetzung erfolgt in Echtzeit, ohne daß die programmiertechnische Struktur des Objekts bekannt sein muß.

Mehr Infos auf der Internet-Seite www.microsoft.com/directx

OpenGL

Nachdem sich OpenGL im Profilager seinen guten Ruf bei CAD/CAM-Programmen erarbeitet hat, dringt es auch verstärkt in den PC-Bereich vor. OpenGL ist plattformübergreifend und unterscheidet zwischen Immediate- und Display-List-Modus. In einer Display-List sind bestimmte Kommando-Sequenzen gespeichert, die sich später wieder abrufen lassen. Die Objektbeschreibungen werden dann vom Treiber direkt der Liste entnommen, was eine sehr hohe Performance ergibt. Wenn Objekte jedoch häufig manipuliert werden müssen, wird besser der Immediate-Modus eingesetzt. OpenGL bietet eine Vielzahl von Grafikfunktionen, vom Rendern eines simplen geometrischen Punktes, einer Linie oder eines gefüllten Polygons bis hin zu raffinierten Darstellungen von gebogenen Oberflächen mit Licht- und Schatten-effekten und Texturen. Die ca. 336 Routinen von OpenGL 1.1 geben dem Programmierer Zugriff auf diese Grafikfähigkeiten.

Mehr Infos auf der Internet-Seite www.sgi.com/Technology/openGL

Farbpaletten, TrueColor und Graustufen

In der folgenden Tabelle sind übliche Grafikmodi aufgelistet. Nicht alle Grafikmodi sind auf den ELSA-Karten verfügbar:

Grafikmodus	bpp	bpg	Farben (aus Palette)	max. Graustufen
VGA 0x12	4	6+6+6	16 aus 262.144	16
VGA 0x13	8	6+6+6	256 aus 262.144	64
Standard	8	6+6+6	256 aus 262.144	64
	8	6+6+6	256 aus 16,7 Mio.	256
HighColor	15	5+5+5	32.768	32
	16	6+6+4	65.536	16
	16	5+6+5	65.536	32
TrueColor	24	8+8+8	16,7 Mio.	256
	32	8+8+8+8	16,7 Mio.	256

(bpp = bits per pixel = Bits pro Farbpunkt; bpg = bits per gun = Bits pro Farbanteil

VGA

Bei VGA-Grafikadaptern wird die digitale, im Videospeicher enthaltene Farbinformation (4 Bits für 16 Farben oder 8 Bits für 256 Farben) im Grafikadapter in eine CLUT (Color Look

Up Table) umgesetzt und als 18-bit-Wert gespeichert. Die 3 x 6 Bits werden getrennt für R/G/B (Rot/Grün/Blau) im RAMDAC gewandelt (Digital/Analog-Wandler) und als Analog-Signal auf nur drei Leitungen (plus Sync-Leitungen) zum Monitor übertragen. Die ursprünglichen Farbinformationswerte werden durch die Übersetzungstabelle zu völlig anderen Werten gewandelt. Der im Videospeicher enthaltene Wert ist also kein Farbwert, sondern nur ein Zeiger auf eine Tabelle, in der der wirkliche Farbwert gespeichert ist. Vorteil dieses Verfahrens: Es brauchen z.B. nur 8 Bits pro Pixel gespeichert zu werden, obwohl die Farbwerte 18 Bits breit sind; Nachteil: Es können GLEICHZEITIG nur 256 Farben aus der Tabelle von 262.144 möglichen Farben dargestellt werden.

DirectColor

Dies ist anders bei DirectColor (TrueColor, RealColor und HighColor). Hier wird der im Videospeicher enthaltene Wert nicht in einer Tabelle übersetzt, sondern direkt an die D/A-Wandler gelegt. Dazu muß die Farbinformation in voller Breite für jedes Pixel gespeichert werden. Die Begriffe HighColor, RealColor und TrueColor werden unterschiedlich verwendet, deshalb ist ihre Bedeutung nicht immer eindeutig.

HighColor und RealColor

HighColor und RealColor stehen in der Regel für einen 15 oder 16 Bits pro Pixel breiten Grafikmodus, während TrueColor nur für den im professionellen Bereich verwendeten 24-bit-bzw. 32-bit-Modus benutzt werden sollte.

Bei 15 Bits stehen für die drei Farbanteile Rot/Grün/Blau jeweils 5 Bits zur Verfügung, pro Farbanteil sind damit 32 Stufen möglich, was sich in der Summe zu 32.768 unterschiedlichen Farbnuancen multipliziert.

Die 16-bit-Grafikmodi werden unterschiedlich eingeteilt. Die üblichsten Formen sind (R-G-B) 5-6-5 (z.B. XGA) und 6-6-4 (z.B. i860). 5-6-5 bedeutet, es werden je 5 Bits für Rot und Blau und 6 Bits für Grün verwendet. Bei 6-6-4 sind es 6 Bits für R + G und 4 Bits für B. Diese beiden Aufteilungen spiegeln die unterschiedliche Farbempfindlichkeit des menschlichen Auges wider: Sie ist für Grün am höchsten und für Blau am niedrigsten. 65.536 unterschiedliche Farben können dargestellt werden.

TrueColor

Aufwendiger ist der TrueColor-Modus mit 24 Bits pro Bildpunkt. Hier stehen 8 Bits für jeden Farbanteil zur Verfügung (256 Stufen), die sich zu 16,7 Millionen unterschiedlichen Farbnuancen multiplizieren. Dies sind mehr Farben als Pixel auf dem Bildschirm (bei 1280 x 1024 = 1,3 Millionen Pixel).

VESA DDC (Display Data Channel)

Unter VESA DDC versteht man einen seriellen Datenkanal zwischen dem Monitor und der Grafikkarte, vorausgesetzt beide Komponenten unterstützen DDC, und das Monitorkabel enthält die zusätzliche DDC-Leitung. Es wird ein erweitertes Monitorkabel verwendet. Über dieses Kabel kann der Monitor Daten über seine technische Spezifikation wie z.B. Name, Typ, maximale Zeilenfrequenz, Timingdefinitionen etc. senden oder Befehle von der Grafikkarte empfangen.

Es wird zwischen DDC2B und DDC2AB unterschieden.

DDC2B

Der Datenkanal, basierend auf dem l²C-Bustyp mit dem Access-Bus-Protokoll, kann in beiden Richtungen betrieben werden (bidirektional). Im Falle des üblichen IBM-VGA-kompatiblen 15poligen Monitorkabels wird der Pin 12 (früher Monitor-ID-Bit 1) zur Daten-übertragung (SDA) und der Pin 15 (früher Monitor-ID-Bit 3) als Taktsignal (SCL) benutzt. Die Grafikkarte kann sowohl den EDID-Datenblock (siehe DDC1) als auch die umfangreicheren VDIF-Informationen (VESA Display Identification File) anfordern.

DDC2AB

Zusätzlich zu DDC2B können Daten zur Steuerung des Monitors und Befehle übertragen werden, um z.B. über die Software die Bildlage zu korrigieren oder die Helligkeit zu steuern (ACCESS-Bus). Bei modernen Grafikkarten und Monitoren findet DDC2AB jedoch keine Anwendung mehr.

Die Anschlußbelegung der VGA-D-Shell-Buchse können Sie dem Kapitel 'Technische Daten' entnehmen.

Videosignal-Formate

Bei der Übertragung von Videosignalen findet man zwei gängige Standards: Compositeund S-Video. Das IEEE-1394-Format wird z.Z. nur von Sony-Geräten unterstützt.

Computermonitor und Grafikkarte verständigen sich auf drei Farbkanälen. Die Farbinformationen werden in die Farbsignale Rot, Grün und Blau aufgetrennt (RGB). Die Videoinformation für den Fernseher unterscheidet hingegen nur zwischen der Schwarzweiß- und Farbinformation (Luminanz und Chrominanz).

Composite-Video

Composite-Video – auch FBAS genannt – legt die Informationen der Luminanz und Chrominanz auf ein einzelnes Signal. Dadurch lassen sich alle Informationen eines Videobildes mit nur einem Kabel übertragen. Für die Übertragung der Fernsehsender ist diese

Methode sehr vorteilhaft. Was die Qualität des Signals betrifft, hat dieses Verfahren auch klare Nachteile: Die Verschachtelung von Luminanz (Y) und Chrominanz (C) führt zu Ungenauigkeiten und damit zu Fehlern im Videobild.

S-VHS

Wenn man diesen Nachteil des Composite-Video-Formats betrachtet, liegt die Lösung nahe. S-VHS bzw. Y/C bietet sie: die Trennung der Y- und C-Signale. Der Aufwand des zweiten, dafür erforderlichen Kabels wird durch die bessere Bildqualität mehr als kompensiert. Videokameras, die im Hi-8- oder SVHS-C-Verfahren aufzeichnen, trennen bei der Aufnahme zwischen Y- und C-Signal. Bei der Übertragung zum Fernseher oder Videogerät sollte nach Möglichkeit die Verbindung über die Hosidenbuchse oder ein S-VHS-taugliches Scart-Kabel erfolgen.

IEEE-1394

Eine Sonderstellung nimmt dieses — auch unter FireWire bekannte — Format ein. Qualitativ bietet es die beste Lösung, da es ein digitales Verfahren ist. Die Entwicklung wurde gemeinsam von Apple und Sony initiiert, um digitale Videoinformationen zu übertragen. Die Videodaten werden dabei direkt vom Band, Spur für Spur, übertragen. Der Durchsatz bei IEEE-1394 liegt zur Zeit bei 100 Mbit/s. Bereits jetzt sind Übertragungsraten von 200 und 400 Mbit/s angepeilt.

Kompressionsformate: Verdichter sind am Werk

Das Aufnehmen von Videoinformationen verlangt reichlich Speicherplatz auf Ihrer Festplatte. Der Platzbedarf hängt von der Auflösung und vom gewählten Datenformat ab. Der Treiber für Video for Windows unterstützt dabei die Formate RGB16 und YVU9. Besondere Betrachtung verdient die von ELSA entwickelte Videokompression.

RGB16

Das Datenformat RGB16 arbeitet im RGB-Farbraum. Für jede der drei Farbkomponenten Rot, Grün und Blau werden 5bit/Pixel gespeichert. Zusätzlich wird zu jedem Pixel noch ein Füllbit gespeichert, so daß sich ein Platzbedarf von 16bit/Pixel = 2Byte/Pixel ergibt. Die Farbauflösung eines solchen Bildes entspricht einem RealColor-Bild unter Windows. Der Vorteil von RGB16 ist, daß dieses Format unmittelbar von Windows "verstanden" wird. Der Nachteil ist ein recht hoher Platzbedarf. Ein Bild in der Auflösung 320x240 Pixel belegt schon 150KB. Ein Bild mit 640x480 Pixeln benötigt die vierfache Datenmenge, also 600KB.

YVU9

YVU9 benötigt weniger Speicherplatz (9bit/Pixel). Es arbeitet im YUV-Farbraum und bietet 256 Graustufen pro Pixel (im Vergleich zu 32 Grauabstufungen bei RGB16). Die Kompression wird durch eine verringerte Farbauflösung erreicht. Das menschliche Auge löst nämlich Helligkeitsunterschiede wesentlich feiner auf als Farbunterschiede, so daß bei YVU9 optisch keine Qualitätsunterschiede zum unkomprimierten Bild auftreten. Ein YVU9-Bild mit 320x240 benötigt ca. 84KB. Ein YVU9-Bild mit 640x480 Pixeln benötigt die vierfache Datenmenge, also 336KB.

Bei der Bearbeitung von YVU9-Video sollten Sie 'MainActor' benutzen, da nicht jedes andere Videobearbeitungsprogramm dieses Format "versteht".

ELSA komprimiert

Die ELSA-Videokompression (EQC) verringert die Datenmenge noch weiter. Durch ein spezielles Verfahren werden nur ca. 3 bis 5bit pro Pixel gespeichert. Wie YVU9 arbeitet die ELSA-Videokompression im YUV-Farbraum. Der Kompressionsgrad hängt vom zu komprimierenden Bildmaterial ab. Unverrauschtes Bildmaterial läßt sich z.B. wesentlich besser komprimieren als verrauschtes Bildmaterial. Bildmaterial mit großen Flächen, ähnlicher Helligkeit und geringen Farbänderungen läßt sich besser komprimieren als ein detailreiches Bild. Ein Bild mit 320x240 Pixeln, das mit dem ELSA-Verfahren komprimiert wurde, benötigt ca. 48KB. Ein Bild mit 640x480 Pixeln erreicht im allgemeinen eine höhere Kompression als ein Bild mit 320x240 Pixel und benötigt ca. 120KB.

Die ELSA-Videokompression erledigt Ihr Rechner, während Sie ein Video aufzeichnen, in Echtzeit. Durch die Verwendung der ELSA-Kompression ergeben sich mehrere Vorteile:

- Es lassen sich Videos mit höherer Bildwiederholrate aufzeichnen;
- Es lassen sich Videos in höheren Auflösungen aufzeichnen;
- Die Droprate sinkt;
- Es können auf einer Festplatte längere Videosequenzen aufgezeichnet werden, als das ohne Kompression möglich wäre.

Technische Daten

Technisch Interessierte finden in diesem Kapitel detaillierte Informationen zur *ELSA ERAZOR III.* Sämtliche Anschlüsse und deren Belegung sind ausführlich beschrieben.

Eigenschaften der Grafikkarten

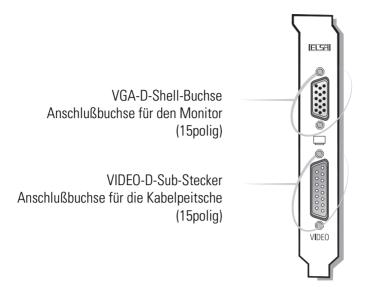
	ELSA ERAZOR III Pro	ELSA ERAZOR III LT		
Grafikprozessor	TNT2 Pro von NVIDIA	TNT2 M64 von NVIDIA		
RAMDAC-Pixeltakt	300 MHz			
Speicherausstattung	32MB mit 1,6GB/s Bandbreite	32MB mit 1,6GB/s Bandbreite		
BIOS	Flash-BIOS mit VBE-3.0-Support	BIOS mit VBE-3.0-Support		
Bussystem	AGP, 2x/4x	AGP, 2x/4x		
VESA DDC	DDC2B			

Die Adreßbelegung Ihrer ELSA-Grafikkarte

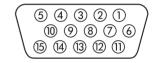
Ihre ELSA-Grafikkarte ist vollständig IBM-VGA-kompatibel und belegt dementsprechend Speicher und bestimmte Adressen im I/O-Bereich. Der Speicherbereich oberhalb von 1MB wird automatisch über das PCI-BIOS-Interface zugewiesen.

Falls es zu Adreßkonflikten kommt, müssen Sie versuchen, die den Konflikt auslösende Erweiterung auf eine andere I/O-Adresse umzustellen. Die ELSA-Grafikkarte kann nicht umgestellt werden! Außerdem benötigt die Karte einen freien Interrupt (IRQ)! Dieser muß unter Umständen im BIOS des Rechners für die Grafikkarte reserviert werden. Hier hilft Ihnen die Beschreibung des BIOS-Setup im Mainboard-Handbuch weiter.

Damit eine reibungslose Funktionsweise Ihres Systems gewährleistet ist, darf auf die Adressen und Bereiche, die von der ELSA-Grafikkarte belegt werden, nicht gleichzeitig von anderer Hardware zugegriffen werden. Folgende Adressen werden belegt:


■ I/O-Adressen:

Standard VGA I/O (3B0-3DF)


Speicheradressen:

Video-RAM (A000-BFFF) Video-BIOS-ROM (C000-C7FF)

Anschlüsse auf der Grafikkarte

Die VGA-D-Shell-Buchse

Anschlußbelegung

Anschluß	Signal	Anschluß	Signal
1	Rot	9	+5V
2	Grün	10	Sync Masse
3	Blau	11	Nicht belegt
4	Nicht belegt	12	bidirektionale Daten (SDA, DDC2)
5	Masse	13	horizontale Synchronisation
6	Rot Masse	14	vertikale Synchronisation
7	Grün Masse	15	Datentakt (SCL, DDC2)
8	Blau Masse		

Die *ERAZOR III* liefert Analogsignale entsprechend der Verordnung RS-170. Hierbei werden die Synchronisations-Informationen getrennt übertragen. Falls bei Ihrem Monitor die Eingangsimpedanz umschaltbar ist, sollte für die R-, G- und B-Video-Eingänge die Einstellung '75 Ohm' (= '75 Ω ') und für die Sync-Eingänge die Einstellung '2 kOhm' (= '2k Ω ') gewählt werden. Nur wenn Ihr Monitor andere Sync-Pegel als übliche Monitore erwartet und kein stabiles Bild zeigt, sollten Sie an den Sync-Eingängen auch andere Schalterstellungen versuchen. Teilweise sind die Schalterstellungen auch nur mit "Low" und "High" beschriftet, dann können Sie entweder in Ihrer Monitor-Betriebsanleitung nachsehen, welche Schalterstellung wieviel Ohm Eingangsimpedanz entspricht, oder Sie probieren aus, in welcher Stellung in allen gewünschten Grafikmodi ein stabiles Bild erscheint.

Anhang

Konformitätserklärungen

ELSA AG

ERAZOR III pro -A32

Tested To Comply With FCC Standards

FOR HOME OR OFFICE USE

Compliance Information Statement

(Declaration of Conformity Procedure)

Responsible Party:

ELSA Inc.

Address:

2231 Calle De Luna

Santa Clara, CA 95054

USA

Phone:

+1-408-919-9100

Type of Equipment:

Graphics Board

Model Name:

ERAZOR III pro -A32

This device complies with Part 15 of the FCC rules.

Operation is subject to the following two conditions:

(1) this device may not cause harmful interference, and

(2) this device must accept any interference received, including interference that may cause undesired operation.

See user manual instructions if interference to radio reception is suspected.

On behalf of the manufacturer / importer this declaration is submitted by

Aachen, August 17th 1999

Stefan Kriebel VP Engineering ELSA AG, Germany **ELSA AG**

ERAZOR III LT

Tested To Comply With FCC Standards

FOR HOME OR OFFICE USE

Compliance Information Statement

(Declaration of Conformity Procedure)

Responsible Party: ELSA Inc.

Address: 2231 Calle De Luna

Santa Clara, CA 95054

USA

Phone: +1-408-919-9100

Type of Equipment: Graphics Board

Model Name: ERAZOR III LT

This device complies with Part 15 of the FCC rules.

Operation is subject to the following two conditions:

(1) this device may not cause harmful interference, and

(2) this device must accept any interference received, including interference that may cause undesired operation.

See user manual instructions if interference to radio reception is suspected.

On behalf of the manufacturer / importer this declaration is submitted by

Aachen, August 17th 1999

Stefan Kriebel
VP Engineering

ELSA AG, Germany

Allgemeine Garantiebedingungen vom 01.06.1998

Diese Garantie gewährt die ELSA AG den Erwerbern von ELSA-Produkten nach ihrer Wahl zusätzlich zu den ihnen zustehenden gesetzlichen Gewährleistungsansprüchen nach Maßgabe der folgenden Bedingungen:

1 Garantieumfang

- a) Die Garantie erstreckt sich auf das gelieferte Gerät mit allen Teilen. Sie wird in der Form geleistet, daß Teile, die nachweislich trotz sachgemäßer Behandlung und Beachtung der Gebrauchsanweisung aufgrund von Fabrikations- und/oder Materialfehlern defekt geworden sind, nach unserer Wahl kostenlos ausgetauscht oder repariert werden. Alternativ hierzu behalten wir uns vor, das defekte Gerät gegen ein Nachfolgeprodukt auszutauschen oder dem Käufer den Original-Kaufpreis gegen Rückgabe des defekten Geräts zu erstatten. Handbücher und evtl. mitgelieferte Software sind von der Garantie ausgeschlossen.
- b) Die Kosten für Material und Arbeitszeit werden von uns getragen, nicht aber die Kosten für den Versand vom Erwerber zur Service-Werkstätte und/oder zu uns.
- c) Ersetzte Teile gehen in unser Eigentum über.
- d) Wir sind berechtigt, über die Instandsetzung und den Austausch hinaus technische Änderungen (z.B. Firmware-Updates) vorzunehmen, um das Gerät dem aktuellen Stand der Technik anzupassen. Hierfür entstehen dem Erwerber keine zusätzlichen Kosten. Ein Rechtsanspruch hierauf besteht nicht.

2 Garantiezeit

Die Garantiezeit beträgt für ELSA-Produkte sechs Jahre. Ausgenommen hiervon sind ELSA-Farbmonitore und ELSA-Videokonferenzsysteme; hierfür beträgt die Garantiezeit drei Jahre. Die Garantiezeit beginnt mit dem Tag der Lieferung des Gerätes durch den ELSA-Fachhändler. Garantieleistungen bewirken weder eine Verlängerung der Garantiefrist, noch setzen sie eine neue Garantiefrist in Lauf. Die Garantiefrist für eingebaute Ersatzteile endet mit der Garantiefrist für das ganze Gerät.

3 Abwicklung

- a) Zeigen sich innerhalb der Garantiezeit Fehler des Gerätes, so sind Garantieansprüche unverzüglich, spätestens jedoch innerhalb von sieben Tagen geltend zu machen.
- b) Transportschäden, die äußerlich erkennbar sind (z.B. Gehäuse beschädigt), sind unverzüglich gegenüber der Transportperson und uns geltend zu machen. Äußerlich nicht erkennbare Schäden sind unverzüglich nach Entdeckung, spätestens jedoch innerhalb von sieben Tagen nach Anlieferung, schriftlich gegenüber der Transportperson und uns zu reklamieren.
- c) Der Transport zu und von der Stelle, welche die Garantieansprüche entgegennimmt und/oder das instandgesetzte Gerät austauscht, geschieht auf eigene Gefahr und Kosten des Erwerbers.
- d) Garantieansprüche werden nur berücksichtigt, wenn mit dem Gerät das Rechnungsoriginal vorgelegt wird.

4 Ausschluß der Garantie

Jegliche Garantieansprüche sind insbesondere ausgeschlossen,

a) wenn das Gerät durch den Einfluß höherer Gewalt oder durch Umwelteinflüsse (Feuchtigkeit, Stromschlag, Staub u.ä.) beschädigt oder zerstört wurde;

- b) wenn das Gerät unter Bedingungen gelagert oder betrieben wurde, die außerhalb der technischen Spezifikationen liegen;
- c) wenn die Schäden durch unsachgemäße Behandlung insbesondere durch Nichtbeachtung der Systembeschreibung und der Betriebsanleitung aufgetreten sind;
- d) wenn das Gerät durch hierfür nicht von uns ermächtigte Personen geöffnet, repariert oder modifiziert wurde;
- e) wenn das Gerät mechanische Beschädigungen irgendwelcher Art aufweist;
- f) wenn Schäden an der Bildröhre eines ELSA-Monitors festgestellt werden, die insbesondere durch mechanische Belastungen (Verschiebung der Bildröhrenmaske durch Schockeinwirkung oder Beschädigungen des Glaskörpers), starke Magnetfelder in unmittelbarer Nähe (bunte Flecken auf dem Bildschirm), permanente Darstellung des gleichen Bildes (Einbrennen des Phosphors) hervorgerufen wurden:
- wenn und soweit sich die Luminanz der Hintergrundbeleuchtung bei TFT-Panels im Laufe der Zeit allmählich reduziert:
- h) wenn der Garantieanspruch nicht gemäß Ziffer 3a) oder 3b) gemeldet worden ist.

5 Bedienungsfehler

Stellt sich heraus, daß die gemeldete Fehlfunktion des Gerätes durch fehlerhafte Fremd-Hardware, -Software, Installation oder Bedienung verursacht wurde, behalten wir uns vor, den entstandenen Prüfaufwand dem Erwerber zu berechnen.

6 Ergänzende Regelungen

- a) Die vorstehenden Bestimmungen regeln das Rechtsverhältnis zu uns abschließend.
- b) Durch diese Garantie werden weitergehende Ansprüche, insbesondere solche auf Wandlung oder Minderung, nicht begründet. Schadensersatzansprüche, gleich aus welchem Rechtsgrund, sind ausgeschlossen. Dies gilt nicht, soweit z.B. bei Personenschäden oder Schäden an privat genutzten Sachen nach dem Produkthaftungsgesetz oder in Fällen des Vorsatzes oder der groben Fahrlässigkeit zwingend gehaftet wird.
- c) Ausgeschlossen sind insbesondere Ansprüche auf Ersatz von entgangenem Gewinn, mittelbaren oder Folgeschäden.
- d) Für Datenverlust und/oder die Wiederbeschaffung von Daten haften wir in Fällen von leichter und mittlerer Fahrlässigkeit nicht.
- e) In Fällen, in denen wir die Vernichtung von Daten vorsätzlich oder grob fahrlässig verursacht haben, haften wir für den typischen Wiederherstellungsaufwand, der bei regelmäßiger und gefahrentsprechender Anfertigung von Sicherheitskopien eingetreten wäre.
- f) Die Garantie bezieht sich lediglich auf den Erstkäufer und ist nicht übertragbar.
- Gerichtsstand ist Aachen, falls der Erwerber Vollkaufmann ist. Hat der Erwerber keinen allgemeinen Gerichtsstand in der Bundesrepublik Deutschland oder verlegt er nach Vertragsabschluß seinen Wohnsitz oder gewöhnlichen Aufenthaltsort aus dem Geltungsbereich der Bundesrepublik Deutschland, ist unser Geschäftssitz Gerichtsstand. Dies gilt auch, falls Wohnsitz oder gewöhnlicher Aufenthalt des Käufers im Zeitpunkt der Klageerhebung nicht bekannt ist.
- h) Es findet das Recht der Bundesrepublik Deutschland Anwendung. Das UN-Kaufrecht gilt im Verhältnis zwischen uns und dem Erwerber nicht.

Glossar

- **3D** Dreidimensional
- **3D-Clipping** Prozeß innerhalb der geometrischen Transformation, bei dem nicht sichtbare Flächen oder Teilbereiche eines 3D-Objekts entfernt werden
- **3D-Pipeline** Summe aller Schritte, die für die Darstellung eines imaginären 3D-Szenarios auf dem Monitor erforderlich sind. Hierzu gehört die →Tesselation, →geometrische Transformation und das →Rendering.
- **AGP** bedeutet Accelerated Graphics Port und ist eine Weiterentwicklung von INTEL auf Basis des PCI Busses. Der AGP-Bus stellt eine höhere Bandbreite für die Datenübertragung zur Verfügung und kommuniziert direkt mit dem Hauptspeicher. Der Bus ist in erster Linie für 3D-Grafikkarten konzipiert.
- **Aliasing** der berühmte "Treppeneffekt". Bei der Darstellung von Schrägen oder Kurvenlinien bilden sich oft zackenförmige Übergänge zwischen den benachbarten Pixeln. Durch Anti-Aliasing können diese Übergänge geglättet werden.
- **Alpha-Blending** Zusatzinformation pro Pixel zum Erzeugen durchsichtiger Materialien.
- **Auflösung** Anzahl der Bildschirmpunkte (Pixel) in horizontaler und vertikaler Richtung (z.B. 640 horizontale x 480 vertikale Pixel).
- Back-Buffer bezeichnet den Bildbereich, der beim →Double-Buffering innerhalb des Frame-Buffers im Hintergrund aufgebaut wird.
- **Back-Face-Culling** Methode, nach der verdeckte Flächen eines 3D-Objekts berechnet werden.

- **Bildwiederholrate** oder Bildwiederholfrequenz (in Hz) gibt an, wie oft ein Bild auf dem Monitor in der Sekunde neu aufgebaut wird.
- **BIOS** Abkürzung für Basic Input/Output System. Ein im Speicher (ROM) des Computers gespeicherter Code, der den Selbsttest und verschiedene andere Funktionen während des Systemstarts durchführt.
- Bump-Mapping Verfahren, bei dem Texturen eine Tiefeninformation bekommen, mit der sich reliefartige Strukturen darstellen lassen.
- **Bussystem** Ein System von parallelen Leitungen zur Übertragung von Daten zwischen einzelnen Systemkomponenten, insbesondere zu Erweiterungs-Steckkarten, z.B. ISA, PCI oder AGP-Bus.
- **Chrominanz** Schwarzweiß-Information bei der Übertragung von Videosignalen
- Clipping beim Clipping werden die für die Darstellung unsichtbaren Teile der Polygone ermittelt. Diese Teile werden dann nicht dargestellt.
- Composite-Video Signalübertragung von Videoinformationen, bei der die Signale für → Chrominanz und → Luminanz zusammengelegt werden (auch FBAS genannt).
- **D/A-Wandler** Digital/Analog-Wandler: Signalwandler, der ein digitales Eingangssignal in ein analoges Ausgangssignal umsetzt.
- **DCC** (Digital Content Creation) Der Bereich DCC umfaßt die Produktion professioneller Visualisierungen und Animationen für den digitalen Medienbereich und die Entertainment-Industrie mit Hilfe des Computers.

- **DDC** steht für Display Data Channel. Ein spezieller Datenkanal, über den ein DDC-fähiger Monitor seine technischen Daten an die Grafikkarte senden kann
- DirectColor Oberbegriff für → TrueColor, →RealColor und → HighColor. Hier wird der im Video-RAM gespeicherte Wert nicht in einer Tabelle übersetzt, sondern direkt an die D/A-Wandler gelegt. Dazu muß die Farbinformation in voller Breite für jedes Pixel gespeichert werden.
- **Double-Buffering** bedeutet, daß der Bildspeicher doppelt vorhanden ist. Dadurch kann das nächste Bild im zuerst unsichtbaren Hintergrund erstellt werden. Sobald dieser Bildaufbau abgeschlossen ist, wird die Bildschirmanzeige auf das bis dahin im Hintergrund befindliche Bild umgeschaltet und auf der anderen Seite wird das nächste Bild vorbereitet. So sehen Animationen und Spiele wesentlich flüssiger aus als bei einfachem Single-Buffer-Betrieb.
- **DPMS** Abkürzung für VESA Display Power Management Signalling. Hiermit ist ein Monitor-Stromsparbetrieb in mehreren Stufen möglich. Die in diesem Handbuch beschriebenen Grafikkarten unterstützen VESA DPMS.
- DRAM Abkürzung für Dynamic Random Access Memory. Dynamischer Schreib/Lese-Speicher mit wahlfreiem Zugriff.
- EDO-RAM Abkürzung für Extended Data Output Random Access Memory (Hyper Page Mode) Gerade bei Grafikkarten ist EDO-RAM sehr gebräuchlich, weil die zuletzt benötigten Daten im Speicher stehen bleiben. Bei der Bilderzeugung folgen mehrere Lesezugriffe hintereinander auf ähnliche Daten, so daß sich ein deutlicher Geschwindigkeitsvorteil ergibt.
- **FBAS** → Composite-Video

- FCC Die FCC-Strahlungsnorm besagt, daß dieses Gerät getestet wurde und die Anforderungen für digitale Geräte der Klasse B gemäß Teil 15 der Richtlinien der amerikanischen Federal Communications Commission (FCC) erfüllt
- **Festfrequenz-Monitor** Ein Monitor, der nur mit einer bestimmten Auflösung und Bildwiederholfrequenz betrieben werden kann.
- **FIFO-Methode** (first in, first out) ein bei der Stapelverarbeitung bzw. bei Warteschlangen verwendetes System, nach dem das erste ankommende Signal auch zuerst bearbeitet wird.
- **Flat-Shading** $-i \rightarrow$ Shading.
- Frame-Buffer Teil des Grafikspeichers, in dem bereits das Bild aufgebaut wird, das als nächstes auf dem Bildschirm erscheint. Zusätzlich werden Transparenzeffekte im Frame-Buffer berechnet.
- Front-Buffer bezeichnet den sichtbaren Bildbereich beim → Double-Buffering.
- **Geometrische Transformation** Ausgehend vom Betrachter, wird die Position des Objekts im Raum bestimmt.
- **Gouraud-Shading** \rightarrow Shading.
- **Grafikbeschleuniger** ist eine Grafikbeschleunigerkarte, d.h., sie ist besonders geeignet für grafikintensive Benutzerumgebungen.
- **HighColor** steht für einen 15 oder 16 Bits pro Pixel breiten Grafikmodus (32.768 bzw. 65.536 Farben).
- Horizontale Ablenkfrequenz Horizontale Ablenkfrequenz, Monitor-Zeilenfrequenz in kHz. Dieser Wert muß passend zum Monitor eingestellt sein, im Extremfall kann sonst der Monitor beschädigt werden!

- Interpolation Videodaten müssen für die Darstellung auf die richtige Fenstergröße gestreckt oder gestaucht werden (stretch/shrink). Werden beim Vergrößern die einzelnen Bildpunkte lediglich vervielfacht, führt dies zu unschönen Klötzchen (Treppen-Effekt). Vermeiden kann man dies durch filternde Interpolationsverfahren (Mittelung). Dabei ist horizontale Interpolation noch recht einfach zu realisieren. Vertikale Interpolation ist aufwendiger und erfordert das Zwischenspeichern der letzten Bildzeile.
- **Luminanz** Farbinformation bei der Übertragung von Videosignalen
- MIP-Mapping Beim MIP-Mapping werden einem Objekt in Abghängigkeit von der Entfernung mehrere Texturen zugeordnet. Nähert sich der Betrachter dem Objekt, wird die Objektdarstellung detaillierter.
- Multifrequenz- oder Multisync-Monitor Monitor, der mit verschiedenen Zeilenfrequenzbereichen angesteuert werden kann, bzw. der sich auf verschiedene Bildsignale (Auflösungen) selbst einstellen kann.
- **OpenGL** 3D-Software-Schnittstelle (3D-API) z.B. in Windows NT implementiert und für Windows 95 als Erweiterung erhältlich. Basiert auf Iris GL von Silicon Graphics und ist von Microsoft und FLSA lizensiert.
- Page-Flipping Das im → Back-Buffer aufbereitete Bild wird zur Darstellung gebracht.
- **PCI-Bus** Abkürzung für Peripheral Component Interconnect Bus. Ein System von parallelen Leitungen zur Übertragung von Daten zwischen einzelnen Systemkomponenten, insbesondere zu Erweiterungs-Steckkarten.
- Phong-Shading → Shading
- **Pixel** Bildpunkt

- **Pixel-Frequenz** Bildpunkt-Taktfrequenz (Anzahl der pro Sekunde gezeichneten Pixel in MHz)
- **Primitiv** Einfaches, polygones geometrisches Objekt, wie z.B. ein Dreieck. 3D-Landschaften sind in den meisten Fällen in Dreiecke zerlegt.
- **RAM** Abkürzung für Random Access Memory. Arbeitsspeicher und Arbeitsspeichererweiterung in VRAM oder DRAM, je nach Grafikkarte.
- **RAMDAC** Der RAMDAC sorgt auf einer Grafikkarte für die Konvertierung der digitalen in analoge Signale. Nur diese können von VGA-Monitoren verarbeitet werden.
- **RealColor** Steht in der Regel für einen 15 oder 16 Bits pro Pixel breiten Grafikmodus (32.768 bzw. 65.536 Farben).
- Rendering Rechenprozeß für die Darstellung einer 3D-Szenerie, bei dem Position und Farbe jedes Punktes im Raum bestimmt werden. Die Tiefeninformation steht im →Z-Buffer, die Farb- und Größeninformation im →Frame-Buffer.
- **RGB** Farbinformation wird im Rot/Grün/ Blau-Farbformat gespeichert.
- **ROM** Abkürzung für Read Only Memory. Nur lesbarer Halbleiter-Speicher.
- **S-Video** oder auch S-VHS. Signalübertragung von Videoinformationen, bei der die Signale für → Chrominanz und → Luminanz getrennt geführt werden werden. Dadurch ergibt sich eine höhere Bildqualität.
- Schattierung → Shading
- **Shading** Schattierung von gekrümmten Flächen, damit diese möglichst realitätsnah aussehen. Dazu werden die gekrümmten Flächen in viele kleine Dreiecke aufgeteilt. Die drei

wichtigsten 3D-Shading-Methoden unterscheiden sich darin, wie genau die Farbverläufe innerhalb dieser Dreiecke dargestellt werden: Flat-Shading: die Dreiecke sind einheitlich gefärbt. Gouraud-Shading: der Farbverlauf ergibt sich aus der Interpolation der Eck-Farbwerte. Phong-Shading: der Farbverlauf ergibt sich aus der Interpolation des Normalen-Vektors.

- **Shutter-Brille** Brille, die mit Hilfe einer stereoskopischen LCD-Projektion dem Betrachter einen sehr räumlichen Eindruck einer 3D-Szene vermittelt
- **Single-Buffer** im Unterschied zum Double Buffer, wo der Bildspeicher doppelt vorhanden ist, kann im Single-Buffer-Betrieb nicht auf das nächste, fertig berechnete Bild zugegriffen werden. Dadurch ist der Ablauf der Animationen nicht mehr ruckelfrei.
- **Tearing** Im Double-Buffer-Betrieb unterscheidet man zwischen Front- und Back-Buffer. Beim Tearing wird der Bildwechsel zwischen Front- und Back-Buffer synchronisiert.
- **Tesselation** Bei der Tesselation werden die Objekte für die 3D-Berechnungen in Polygone (Dreiecke) unterteilt. Für die Dreiecke werden die Eckpunkte, Farb- und evtl. Transparenzwerte festgelegt.

- **Texturen** Überlagerung einer Fläche mit einem Muster inklusive perspektivischer Korrektur, z.B. einer Holzmaserung, oder Zeichnen einer Wand mit Tapete in perspektivischer Ansicht. Auch ein Video kann als Textur benutzt werden.
- **TrueColor** Grafikmodus mit 16,7 Mio. Farben (24 oder 32 Bits pro Pixel). Der im Video-RAM gespeicherte Wert wird nicht in einer Tabelle übersetzt, sondern direkt an die D/A-Wandler gelegt. Dazu muß die Farbinformation in voller Breite für jedes Pixel gespeichert werden.
- **VESA** Abkürzung für Video Electronics Standards Association. Ein Konsortium zur Standardisierung von Computergrafik.
- **VRAM** Abkürzung für Video RAM. Baustein zur Aufrüstung des Speichers der Grafikkarte, um höhere Auflösungen/Farbtiefen darzustellen.
- **Z-Buffer** 3D-Tiefeninformation eines Pixels (Position in der 3. Dimension).
- **Zeilenfrequenz** Monitor-Zeilenfrequenz (horizontale Ablenkfrequenz) in kHz. Dieser Wert muß passend zum Monitor eingestellt sein, im Extremfall kann sonst der Monitor beschädigt werden!

Index

	, !			Flipping	31, 4/
	3D-Clipping	30, 45		Frame-Buffer	31, 46
	3D-Einstellungen			Front-Buffer	31, 46
	3D-Pipeline	29, 45		G	
	A		_	Geometrische Transformation	30. 46
_	AGP	2		Gouraud-Shading	
	Alpha-Blending			Grafikbeschleuniger	
	Anti-Aliasing			Graustufen	
	API				
	Auflösung			••	
	_			HighColor	34, 46
	B Back-Buffer	21 /15		1	
				Immediate Mode	32
	Back-Face-Culling Bildwiederholrate			Interpolation	47
	BIOS			К	
	Bump-Mapping		_	Kabelpeitsche	13
	Bus			Rabelpertoene	
		2, 00		L	
	-			Lieferumfang	
	CE			Luminanz	35, 47
	Chrominanz			М	
	Clipping			Medienwiedergabe	21
	Composite-Video	35, 45		MIP-Mapping	
	D			MJPEG	
	DCI	32		Mode X	
	DDC			Monitor	
	Direct3D				
	DirectColor	34, 46		0	00.45
	Displacement-Mapping	31		OpenGL	33, 4/
	Double-Buffering	46		P	
	D-Shell-Buchse	40		Page-Flipping	31, 47
	E			PCI-Bus	47
	ELSAmovie	22		Performance	27
	LLSAIIIOVIE	∠∠		Phong-Shading	
	F			Point-Sampling	30
	Farbpaletten	33		Primitiv	31, 47
	FCC	<i>'</i>		R	
	Filterung			RAMDAC	29 <i>/</i> 17
	Flat-Shading	30, 46		11/ UVID/10	55, 47

RealColor	34, 47	Texture-Mapping	30
Rechner	2	Transformation	30
Rendering	30, 47	TrueColor	33, 34, 48
Retained Mode	32	■ V	
■ S		VESA	48
Shading	30, 47	VESA DDC	35, 39
Single-Buffer	48	VGA	33
Speicher	39	VideoControl	22
Speicheradressen	39	Videotextdecoder	24
S-VHS	36	- 1A/	
S-Video	47	■ W	22
Systemanforderungen	2	WDM	22
- T		■ Z	
• I	40	Z-Buffer	48
Tearing		Zeilenfreguenz	48
Tesselation		•	
Textur	29 <u>4</u> 8		